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Abstract. In the following paper we present a new semantics for the well-known strategic logic atl.
It is based on adding roles to concurrent game structures, that is at every state, each agent belongs
to exactly one role, and the role specifies what actions are available to him at that state. We show
advantages of the new semantics, analyze model checking complexity and prove equivalence between
standard atl semantics and our new approach.

1 Introduction

One of the most intensively studied [5, 6, 8] areas of research in the field of multi-agent systems are strategic
or cooperation logics – formalisms that allow for reasoning about agents’ strategies and behavior in a multi-
agent setting. Perhaps the most known such logic is Alur, Henzinger and Kupferman’s Alternating-time
Temporal Logic (atl) [2].

The popularity of atl is in no small part due to its relatively high expressive power, but also due to
low complexity of model checking problem for this logic. Model checking of atl can be solved in polynomial
time in the size of the model and the length of the formula [2], which is a very good result. However, as
investigated by Jamroga and Dix [4], in both cases the number of agents must be fixed. If it is not then model
checking of atl models represented as alternating transition systems is NP-complete, and if the models are
represented as concurrent game structures (cgs) it becomes ΣP

2 -complete. Also, van der Hoek, Lomuscio and
Wooldridge show [7] that complexity of model checking for atl is sensitive to model representation. It is
polynomial only if an explicit enumeration of all components of the model is assumed. For models represented
in a (simplified) reactive modules language (rml) [1] complexity of model checking for atl becomes as hard
as the satisfiability problem for this logic, namely EXPTIME [7].

We present an alternative semantics that interprets formulas of ordinary atl over concurrent game
structures with roles. As we describe in Section 2.1, such structures introduce an extra element – a set R
of roles. Agents belonging to the same role are considered homogeneous in the sense that all consequences
of their actions are captured by considering only the number of votes an action gets (one vote per agent).
We give an example that motivates our approach and prove equivalence with atl based on concurrent game
structures. We then discuss model checking, showing it to be of polynomial complexity in the size of models.
This seems significant, since as long as the number of roles remain fixed, the size of our models does not
grow exponentially in the number of players.

2 Role-based semantics for ATL

The language of ordinary atl is the following, as presented in [2]:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A〉〉 © φ | 〈〈A〉〉�φ | 〈〈A〉〉φUφ
where p is propositional letter, and A is a coalition of agents. We follow standard abbreviations (e.g. 〈〈 〉〉 for
〈〈∅〉〉) and skip connectives that are derivable.
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2.1 Concurrent Game Structures with Roles

In this section we will introduce concurrent game structures with roles (rcgs) and consider an example. We
will be using the notation [n] = {1, . . . , n}, and we will let AB denote the set of functions from B to A. We
will often work with tuples v = 〈v1, . . . , vn〉 and we will often view v as a function with domain [n] and write
v(i) for vi. We will do addition and subtraction on tuples of the same arity component by component, e.g.
for v = 〈v1, . . . , vn〉, v′ = 〈v′1, . . . , v′n〉, v − v′ = 〈v1 − v′1, . . . , vn − v′n〉. Given a function f : A× B → C and
a ∈ A, we will use fa to denote the function B → C defined by fa(b) = f(a, b) for all b ∈ B.

Definition 2.1. An rcgs is a tuple H = 〈A, R,R, Q,Π, π,A, δ〉 where:

– A is a non-empty set of players. In this text we assume A = [n] for some n ∈ N, and we will reserve n
to mean the number of agents.

– Q is the non-empty set of states.

– R is a non-empty set of roles. In this text we assume R = [i] for some i ∈ N.

– R : Q×R→ ℘(A), such that for every q ∈ Q we have

• For all r, r′ ∈ R, if r 6= r′ then R(q, r) ∩R(q, r′) = ∅
• ⋃r∈RR(q, r) = A

For a coalition A ⊆ A we write Ar,q for the agents in A which belong to role r at q, i.e. Ar,q = R(q, r)∩A.
– Π is a set of propositional letters and π : Q→ ℘(Π) maps states to the propositions true at that state.

– A : Q×R→ N+ is the number of available actions in a given state for a given role.

– For A = [n] = {1, . . . n}, we say that the set of complete votes for a role r in a state q is Vr(q) = {vr,q ∈
[n][A(q,r)] | ∑1≤a≤A(q,r) vr,q(a) = |R(q, r)|}. The set of complete profiles at q is P (q) =

∏
r∈R Vr(q).

For each q ∈ Q we have a transition function at q, δq : P (q) → Q defining a partial function δ :
Q×⋃q∈Q P (q)→ Q such that for all q ∈ Q, P ∈ P (q), δ(q, P ) = δq(P )

To illustrate how rcgs differs from an ordinary concurrent game structure, we provide an example.

Example 2.1. We construct an example similar to the well-known train-controller scenario [2], but in contrast
to the original, in our scenario there are nt trains. Consider a turn-based synchronous game structure with
roles Strain = 〈A, R,R, Q,Π, π,A, δ〉 where:

– A = {1, . . . , nt, nt + 1}. There are nt trains and one controller.

– R = {train, ctr}. There are two roles: one for trains and one for the controller.

– Q = {q0, q1, q2, q3}.
– R(qi, train) = nt, and R(qi, ctr), for all qi ∈ Q.

– Π = {out of gate, in gate, request, grant}
– π(q0) = {out of gate}, π(q1) = {out of gate, request},
π(q2) = {out of gate, grant}, π(q3) = {in gate}.

– A(q0, train) = 2, A(q0, ctr) = 1, A(q1, train) = 1, A(q1, ctr) = 3,
A(q2, train) = 2, A(q2, ctr) = 1, A(q3, train) = 1, A(q3, ctr) = 2.

– and finally

δ(q0, 〈(0, nt), 1〉) = δ(q1, 〈nt, (1, 0, 0)〉) = δ(q2, 〈(0, nt), 1〉)
= δ(q3, 〈(a, nt − a), 1〉) = q0 where 1 ≤ a ≤ n

δ(q0, 〈(a, nt − a), 1〉) = δ(q1, 〈nt, ((0, 1, 0))〉) = q1 where 1 ≤ a ≤ n
δ(q1, 〈nt, (0, 0, 1)〉) = δ(q2, 〈(a, nt − a), 1〉) = q2 where 2 ≤ a ≤ n
δ(q2, 〈(1, nt − 1), 1〉) = δ(q3, 〈(0, nt), 1〉) = q3
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Figure 1 presents the example in a visual way. The model can be seen as a generalization of the classical
train-controller example. In q0 we stay in q0 unless at least one train issues a request. In q1 the controller
behaves as before; it can postpone making a decision (staying in q1), reject all requests (going to q0), or
accept the requests (going to q2). In q2 the trains can choose to enter the tunnel, but only one of them may
do so; if nobody attempts to enter the grant is revoked (or relinquished), if more than one train attempts
to enter we stay in q2, and finally if (the trains reach an agreement and) only one train enters we go to q3.
In q3 any train may decide that the train in the tunnel has to leave (returning to q0), and the train in the
tunnel must comply. This reflects the homogeneity among players in the trains role. The action of deciding
to leave the tunnel is shared among all trains, and the train actually in the tunnel remains unidentified.

h(0, nt), 1i

h(0, nt), 1i

q0 q1

q2q3

out of gate
out of gate

request

out of gate
grant

in gate

request
delay

grantrelinquish

deny

delay

enter

h(1, nt � 1), 1i

h(0, n
t ), 1i

hnt, (1, 0, 0)i

#nt

8
><
>:

h(1, nt � 1), 1i
...
h(nt, 0), 1i

#nt

8
><
>:

h(nt, 0), 1i
...
h(1, nt � 1), 1i

h(2, nt � 2), 1i
...

h(nt, 0), 1i

9
>=
>;

#(nt � 1)

hn
t ,(0

,0,1)i
hnt, (0, 1, 0)i

Fig. 1. Train controller model for nt trains (similar to the one presented in [2]).

Notice that in the single-train case (nt = 1), the train can not wait before entering the tunnel after being
granted permission (and retain the permission). This could of course easily be avoided by adding another
action. More importantly, in the case of several trains, the controller can not distinguish between the different
trains, so permission must be granted to all or none. This is a consequence of the strict homogeneity in the
model: not only are the agents homogeneous in terms of the actions available to them, we can not reasonably
distinguish between them as long as they remain in the same role. Notice that this feature allow us to add
any number of trains to the scenario without incurring more than a linear increase in the size of the model
(total number of profiles). This would not be possible if we did not have roles. If the model above was to be
rendered as a concurrent game structure, the number of possible ways in which trains could act would be
exponential in all states where trains have to make a choice of what action to perform. This would be the
case even if, as in the scenario above, almost all possible combinations of choices should be treated in the
same way by the system.

Before we move on we introduce some more notation. Given a role r ∈ R, a state q and a coalitionA, the set

of A-votes for r at q is Vr(q, A), defined as follows: Vr(q, A) =
{
v ∈ [|Ar,q|][A(q,r)]

∣∣∣
∑

a∈[A(q,r)] v(a) = |Ar,q|
}

The A-votes for r at q gives the possible ways agents in A that are in role r at q can vote. Given a state q
and a coalition A, we define the set of A-profiles at q: P (q,A) = {〈v1, . . . , v|R|〉 | 1 ≤ i ≤ |R| : vi ∈ Vr(q,A)}
When we say that a function v : [A(q, r)] → [n] is a complete vote (for r at q), we mean that v ∈ Vr(q,A).
For any v ∈ Vr(q, A) and w ∈ Vr(q,B) we write v ≤ w iff for all i ∈ [A(q, r)] we have v(i) ≤ w(i). If v ≤ w,

we say that w extends v. If F = 〈v1, . . . , vR〉 ∈ P (q,A) and F ′ = 〈v′1, . . . , v′R〉 ∈ P (q,B) with vi ≤ v′i for
every 1 ≤ i ≤ |R|, we say that F ≤ F ′ and that F extends F ′.
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An A profile F ∈ P (q, A) is a complete profile iff the sum of its components equal |A|, i.e. F ∈ P (q) iff(∑
r≤|R|

∑
a∈A(q,r) v(a)

)
= |A| iff A = A. Given a (partial) profile F ′ at a state q we write ext(q, F ) for the

set of all complete profiles that extend F ′.

Given two states q, q′ ∈ Q, we say that q′ is a successor of q if there is some F ∈ P (q) such that
δ(q, F ) = q′. A computation is an infinite sequence λ = q0q1 . . . of states such that for all positions i ≥ 0,
qi+1 is a successor of qi. We follow the standard abbreviations, hence q-computation denotes a computation
starting at q, and λ[i], λ[0, i] and λ[i,∞] denote the i-th state, the finite prefix q0q1 . . . qi and the infinite
suffix qiqi+1 . . . of λ for any computation λ and its position i ≥ 0. An A-strategy for A ⊆ A is a function
sA : Q → ⋃

q∈Q P (q, A) such that sA(q) ∈ P (q, A) for all q ∈ Q. That is, sA maps states to A-profiles
at that state. The set of all A-strategies is denoted by strat(A). If s is an A-strategy and we apply δq to
s(q), we obtain a unique new state q′ = δq(s(q)). Iterating, we get the induced computation λs,q = q0q1 . . .
such that q = q0 and ∀i ≥ 0 : δqi(s(qi)) = qi+1. Given two strategies s and s′, we say that s ≤ s′ iff
∀q ∈ Q : s(q) ≤ s′(q). Given an A-strategy sA and a state q we get an associated set of computations
out(sA, q). This is the set of all computations that can result when at any state, the players in A are voting
in the way specified by sA:
out(sA, q) = {λs,q | s is an A-strategy and s ≥ sA} It will also be useful to have access to the set of states
that can result in the next step when A ⊆ A follows strategy sA at state q, succ(q, sA) = {q′ ∈ Q | ∃F ∈
ext(q, sA) : δ(q, F ) = q′}. Clearly, q′ ∈ succ(q, sA) iff there is some λ ∈ out(q, sA) such that q′ = λ[0].

2.2 New Semantics for ATL

Definition 2.2. Given a rcgs S and a state q in S, we define the satisfaction relation |= inductively:

S, q |= p iff p ∈ π(q) S, q |= ¬φ iff not S, q |= φ
S, q |= φ ∧ φ′ iff S, q |= φ and S, q |= φ′ S, q |= 〈〈A〉〉©φ iff there is sA ∈ strat(A) such

that for all λ ∈ out(sA, q), we have S, λ[1] |= φ
S, q |= 〈〈A〉〉�φ iff there is sA ∈ strat(A) such
that for all λ ∈ out(sA, q) we have S, λ[i] |= φ
for all i ≥ 0

S, q |= 〈〈A〉〉φUφ′ iff there is sA ∈ strat(A) such
that for all λ ∈ out(sA, q) we have S, λ[i] |= φ′

and S, λ[j] |= φ for some i ≥ 0 and for all
0 ≤ j < i

3 Equivalence between RCGS and CGS

In this section we show that definition 2.2 provides an equivalent semantics for atl. We do this by first
giving a surjective function f that takes an rcgs and returns a cgs. Then we show that S and f(S) satisfy
the same atl formulas.

Remember that a concurrent game structure is a tuple 〈A, Q,Π, π, d, δ′〉 where every element is defined
as for an rcgs except d : A × Q → N+ that maps agents and states to actions available at that state,
and δ′ that is a partial function from states and action tuples to states defined by δ′(q, t) = δ′q(t) where
δ′q :

∏
a∈A[da(q)] → Q is a transition function at q based on tuples of actions rather than profiles. The

satisfaction relation for atl based on cgss can be defined exactly as in definition 2.2, the difference concerning
only what counts as a strategy.

We refer to elements of
∏

a∈A[da(q)] as complete action tuples at q. A (memory-less) strategy for a ∈ A
in a cgs M is a function sa : Q → N+ such that for all q ∈ Q, sa(q) ∈ [da(q)] while a strategy for A ⊆ A
is a list of strategies for all agents in A, sA = 〈sa1

, sa2
, . . . , sa|A|〉, for A = {a1, a2, . . . , a|A|}. We denote the

set of strategies for A ⊆ A by strat(A). When needed to distinguish between different structures we write
strat(S,A) to indicate that we are talking about the set of strategies for A in S.

We say that a complete action tuple at q, t = 〈ia1
, . . . , ian

〉 extends a strategy sA ∈ strat(A) if for all
aj ∈ A we have iaj

= saj
(q). We denote the set of all complete action tuples at q extending sA by ext(q, sA).
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For any state q ∈ Q we have the set of all computations that comply with sA:

out(q, sA) ={λ = q0q1q2 . . .

| q = q0 and for all i ∈ N : ∃t ∈ ext(qi, sA), δ(q, t) = qi+1}

We define the set of sA-successors at q ∈ Q: succ(q, sA) = {q′ ∈ Q | ∃t ∈ ext(q, sA), δ(q, t) = q′}. When we
need to make clear which structure we are talking about, we write succ(S, q, sA). Observe that q′ ∈ succ(q, sA)
iff q′ = λ[1] for some λ ∈ out(q, sA).

The translation function f from rcgs to cgs is defined as follows:

f〈A, R,R, Q,Π, π,A, δ〉 = 〈A, Q,Π, π, d, δ′〉, where:

da(q) = A(q, r) where a ∈ R(q, r)

δ′(q, α1, . . . , αn) = δ(q, v1, . . . , v|R|) where for each role r

vr = 〈|{i ∈ R(q, r) | αi = 1}|, . . . , |{i ∈ R(q, r) | αi = A(q, r)}|〉
We can see straight away that f is surjective because for any cgs S′ with n agents we could define a

rcgs S with that many roles where each role contains exactly one agent. A vote for a role r, vr, at q would
then simply be a da(q)-tuple consisting of a single 1 (representing the agents chosen action) and otherwise
zeros. It is easy to verify that f(S) = S′.

Given either a cgs or an rcgs S, we define the set of sets of states that a coalition A can enforce in the
next state of the game: force(S, q,A) = {succ(q, sA) | sA is a strategy for A in S}. The first thing we do
towards showing equivalence is to describe a surjective function m : strat(f(S))→ strat(S) mapping action
tuples and strategies of f(S) to profiles and strategies of S respectively. For all A ⊆ A and any action tuple
for A at q, tq = 〈αa1

, αa2
, ..., αa|A|〉 with 1 ≤ αai

≤ dai
(q) for all 1 ≤ i ≤ |A|, the A-profile m(tq) is defined

in the following way:

m(tq) = 〈v(tq, 1), . . . , v(tq, |R|)〉 where for all 1 ≤ r ≤ |R| we have

v(tq, r) = 〈|{a ∈ Ar,q | αa = 1}|, . . . , |{a ∈ Ar,q | αa = A(q, r)}|〉

Thus the i-th component of v(tq, r) will be the number of agents from A in role r at q that perform action i.
Given a strategy sA in f(S) we define the strategy m(sA) for S by taking m(sA)(q) = m(sA(q)) for all

q ∈ Q.
Surjectivity of m is helpful since it means that for every possible strategy that exists in the rcgs S, there

is a corresponding one in f(S). This in turn means that when we quantify over strategies in one of S and
f(S) we are implicitly also quantifying over strategies in the other. Showing equivalence, then, can be done
by showing that these corresponding strategies have the same strength. Before we proceed, we give a proof
of surjectivity of m.

Lemma 3.1. For any rcgs S and any A ⊆ A, the function m : strat(f(S), A)→ strat(S,A) is surjective

Using the surjective function m we can prove the following lemma, showing that the ”next time” strength
of any coalition A is the same in S as it is in f(S).

Lemma 3.2. For any rcgs S, any state q ∈ Q and any coalition A ⊆ A, we have force(S,A, q) =
force(f(S), A, q)

Given a structure S (with or without roles), and a formula φ, we define true(S, φ) = {q ∈ Q | S, q |= φ}.
Equivalence of models S and f(S) is now demonstrated by showing that the equivalence in next time strength
established in lemma 3.2 suffices to conclude that true(S, φ) = true(f(S), φ) for all φ.

Theorem 3.1. For any rcgs S, any φ and any q ∈ Q, we have S, q |= φ iff f(S), q |=CGS φ
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4 Model checking and the size of models

We have already seen that using roles can lead to a dramatic decrease in the size of atl-models. In this
section we give a more formal account, first by investigating the size of models in terms of the number of
roles, players and actions, then by an analysis of model checking atl over concurrent game structures with
roles.

Given a set of numbers [a] and a number n, it is a well-known combinatorial fact that the number of

ways in which to choose n elements from [a], allowing repetitions, is (n+(a−1))!
n!(a−1)! . Furthermore, this number

satisfies the following two inequalities:4

(n+(a−1))!
n!(a−1)! ≤ an ,

(n+(a−1))!
n!(a−1)! ≤ na (1)

These two inequalities provides us with an upper bound on the size of rcgs models that makes it easy
to compare their sizes to that of cgs models. Typically, the size of concurrent game structures is dominated
by the size of the domain of the transition function. For an rcgs and a given state q ∈ Q this is the number
of complete profiles at q. To measure it, remember that every complete profile is an |R|-tuple of votes vr, one
for each role r ∈ R. It follows that |P (q)| is the set of all possible combinations of votes for each role. Also
remember that a vote vr for r ∈ R is an A(q, r)-tuple such that the sum of entries is |R(q, r)|. Equivalently,
the vote vr can be seen as the number of ways in which we can make |R(q, r)| choices, allowing repetitions,

from a set of A(q, r) alternatives. Looking at it this way, we obtain: |P (q)| = ∏r∈R
(|R(q,r)|+(A(q,r)−1))!
|R(q,r)|!(A(q,r)−1))! .

We sum over all q ∈ Q to obtain what we consider to be the size of an rcgs S. In light of equation 1, it
follows that the size of S is upper bounded by both of the following expressions.

O(
∑

q∈Q
∏

r∈R |R(q, r)|A(q,r)) , O(
∑

q∈Q
∏

r∈R A(q, r)|R(q,r)|) (2)

We observe that growth in the size of models is polynomial in a = maxq∈Q,r∈RA(r, q) if n = A and |R| is
fixed, and polynomial in p = maxq∈Q,r∈R|R(q, r)| if a and |R| are fixed. This identifies a significant potential
advantage arising from introducing roles to the semantics of atl. The size of a cgsM , when measured in the
same way, replacing complete profiles at q by complete action tuples at q, grows exponentially in the players
whenever da(q) > 1 for each player a. We stress that we are not just counting the number of transitions in
our models differently. We do have an additional parameter, the roles, but this is a genuinely new semantic
construct that gives rise to genuinely different semantic structures. We show that it is possible to use them to
give the semantics of atl, but this does not mean that there is not more to be said about them. Particularly
crucial is the question of model checking over rcgs models.

4.1 Model checking using roles

For strategic logics, checking satisfiability is usually non-tractable, and the question of model checking is often
crucial in assessing the usefulness of different logics. For atl there is a well known “standard” algorithm,
see e.g. [2]. It does model checking in time linear in the length of the formula and the size of the model. The
algorithm is based on the fixed point equation 3 from the proof of Theorem 3.1, so it will work also when
model checking rcgs models. It is not clear, however, how the high level description should be implemented
and, crucially, what the complexity will be in terms of the new parameters that arise.

Given a structure with roles, S, and a formula φ, the standard model checking algorithm returns the set
true(S, φ), proceeding as detailed in algorithms 1 and 2.

Given a structure S, a coalition A, a state q ∈ Q and a set of states Q′, the method enforce answers
true or false depending on whether or not A can enforce Q′ from q. That is, it tells us if at q there is
Q′′ ∈ force(q, A) such that Q′′ ⊆ Q′. Given a fixed length formula and a fixed number of states, this step
dominates the running time of mcheck (algorithm 1). It is also the only part of the standard algorithm that
behaves in a different way after addition of roles to the structures. It involves the following steps:

4 If this is not clear, remember that na and an are the number of functions [n][a] and [a][n] respectively. It should
not be hard to see that all ways in which to choose n elements from a induce non-intersecting sets of functions of
both types
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Algorithm 1 mcheck(S, φ)

if φ = p ∈ Π then
return π(p)

if φ = ¬ψ then
return Q \mcheck(S, ψ)

if φ = ψ ∧ ψ′ then
return mcheck(S, ψ) ∩mcheck(S, ψ′)

if φ = 〈〈A〉〉 © ψ then
return {q | enforce(S, q,A,mcheck(S, ψ))}

if φ = 〈〈A〉〉�ψ then
Q1 := Q, Q2 := mcheck(S, ψ)
while Q1 6⊆ Q2 do
Q1 := Q2, Q2 := {q ∈ Q | enforce(S,A, q,Q2)} ∩Q2

return Q1

if φ = 〈〈A〉〉ψUψ′ then
Q1 := ∅, Q2 = mcheck(S, ψ), Q3 = mcheck(S, ψ′)
while Q3 6⊆ Q1 do
Q1 := Q1 ∪Q3, Q3 := {q ∈ Q | enforce(S,A, q,Q1)} ∩Q2

return Q3

Algorithm 2 enforce(S,A, q,Q′)

for F ∈ P (q,A) do
p = true
for F ′ ∈ ext(q, F ) do

if δ(q, F ′) 6∈ Q′ then
p = false

if p = true then
return true

return false

For all profiles F ∈ P (q, A) the algorithm runs through all complete profiles F ′ ∈ P (q) that extend F .
Over cgss, given a coalition A and two action tuples t = 〈αa1 , αa2 , . . . , αa|A|〉, t′ = 〈α′a1

, α′a2
, . . . , α′a|A|

〉 for

A at q, the sets of complete action tuples that extend t and t′ respectively do not intersect. It follows that
running through all such extensions for all possible action tuples for A at q is at most linear in the total
number of complete action tuples at q. This is no longer the case for rcgs models. Given two profiles P, P ′

for A at q, there can be many shared extensions. In fact, P and P ′ can share exponentially many in terms
of the number of players and actions available.5 So, in general, running enforce requires us to make several
passes through the set of all complete profiles, and the complexity is no longer linear. Still, it is polynomial
in the number of complete profiles, since for any coalition A and state q we have |P (q, A)| ≤ |P (q)|, meaning
that the complexity of enforce is upper bounded by |P (q)|2. It follows that model checking of atl over
concurrent game structures with roles is polynomial in the size of the model. We summarize this result.

Proposition 4.1. Given a cgs S and a formula φ, mcheck(S, φ) takes time O(le2) where l is the length of
φ and e =

∑
q∈Q

P (q) is the total number of transitions in S

Since model checking atl over cgss takes only linear time, O(le), adding roles apparently makes model
checking harder. On the other hand, the size of cgs models can be bigger by an exponential factor, making

5 To see this, consider P = 〈v1, v2 . . . , v|R|〉 and P ′ = 〈v′1, v′2, . . . , v′|R|〉. Each vr, v
′
r ∈ VA(q, r) sums to

Σ1≤j≤A(q,r)vi(j) = |Aq,r|. Then form a complete profile P ′′ = 〈v′′1 , v′′2 , . . . , v′′|R|〉 at q such that for all 1 ≤ r ≤ |R|
and all 1 ≤ j ≤ A(q, r) we have v′′r (j) = max(vr(j), v′r(j)). Then, if it exists, choose a coalition A′ such that
|A′r,q| = Σ1≤j≤A(q,r)v

′′
r (j). It is clear that the number of complete profiles that extends both v and v′ is equal to

the number of all A \A′-profiles at q.

7



model checking much easier after adding roles. In light of the bounds we have on the size of models, c.f.
equation 2, we find that as long as the roles and the actions remain fixed, complexity of model checking is
only polynomial in the number of agents. This is a potentially significant argument in favor of roles.

In practice, however, finding an optimal rcgs for a given cgs model M might be at least as difficult
as model checking on M directly. It involves identifying the structure from f−(M) that has the minimum
number of roles. In general, one cannot expect this task to have sub-linear complexity in the size of M .6 Roles
should be used at the modelling stage, as they give the modeller an opportunity for exploiting homogeneity
in the system under consideration. We think that it is reasonable to hypothesize that in practice, most large
scale systems that lends themselves well to modelling by atl do so precisely because they exhibit significant
homogeneity. If not, identifying an accurate atl model of the system, and model checking it, seems unlikely
to be tractable at all.

The question arises as to whether or not using an rcgs is always the best choice, or if there are situations
when the losses incurred in the complexity of model checking outweigh the gains we make in terms of the
size of models. A general investigation of this in terms of how fixing or bounding the number of roles affect
membership in complexity classes is left for future work. Here, we conclude with the following proposition
which states that as long we use the standard algorithm, model checking any cgs M can be done at least
as quickly by model checking an arbitrary S ∈ f−(M).

Proposition 4.2. Given any cgs-model M and any formula φ, let c(mcheck(M,φ)) denote the complex-
ity of running mcheck(M,φ). We have, for all S ∈ f−(M), that complexity of running mcheck(S, φ) is
O(c(mcheck(M,φ))

5 Conclusions and future work

In this paper we have described a new type of semantics for strategic logic atl. We have provided moti-
vational examples and argued that although in principle model checking atl interpreted over concurrent
game structures is harder than the standard approach, it is still polynomial and generates exponentially
smaller models. We believe this provides conclusive evidence that concurrent game structures with roles are
an interesting semantics for atl, and should be investigated further.
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A Proofs

Proof of Lemma 3.1

Proof. Let pA be some strategy for A in S. We must show there is a strategy sA in f(S) such thatm(sA) = pA.
For all q ∈ Q, we must define sA(q) appropriately. Consider the profile pA(q) = 〈v1, . . . , v|R|〉 and note
that by definition of a profile, all vr for 1 ≤ r ≤ |R| are A-votes for r and that by definition of an A-
vote, we have

∑
1≤i≤A(q,r) vr(i) = |Ar,q|. Also, for all agents a, a′ ∈ Ar,q we know, by definition of f , that

da(q) = da′(q) = A(q, r).
From this it follows that there are functions α : A → N+ such that for all a ∈ A, α(a) ∈ [da(q)] and

|{a ∈ Ar,q | α(a) = i}| = vr(i) for all 1 ≤ i ≤ A(q, r), i.e.

vr = 〈|{a ∈ Ar,q|α(a) = 1}|, . . . , |{a ∈ Ar,q|α(a) = A(q, r)}|〉

We choose some such α and sA = 〈α(a1), . . . , α(a|A|)〉. Having defined sA in this way, it is clear that
m(sA) = pA. ut

Proof of Lemma 3.2

Proof. By definition of force and lemma 3.1 it is sufficient to show that for all sA ∈ strat(f(S), A), we
have succ(S,m(sA), q) = succ(f(S), sA, q). We show ⊆ as follows: Assume that q′ ∈ force(S,m(sA), q).
Then there is some complete profile P = 〈v1, . . . , v|R|〉, extending m(sA)(q), such that δ(q, P ) = q′. Let
m(sA)(q) = 〈w1, . . . , w|R|〉 and form P ′ = 〈v′1, . . . , v′|R|〉 defined by v′i = vi − wi for all 1 ≤ i ≤ |R|.
Then each v′i is an (A \ A)-vote for role i, meaning that the sum of entries in the tuple v′i is |(A \ A)r,q|.
This means that we can define a function α : A → N+ such that for all a ∈ A, α(a) ∈ [da(q)] and
for all a ∈ A, α(a) = sa(q) and for every r ∈ R and every a ∈ (A \ A), and every 1 ≤ j ≤ A(q, r),
|{a ∈ (A \ A)r,q | α(a) = j}| = v′r(j). Having defined α like this it follows by definition of m that for all
1 ≤ j ≤ A(q, r), |{a ∈ Ar,q | α(a) = j}| = wr(j). Then for all r ∈ R and all 1 ≤ j ≤ A(q, r) we have
|{a ∈ R(q, r) | α(a) = j}| = vr(j). By definition of f(S) it follows that q′ = δ(q, P ) = δ′(q, α) so that
q′ ∈ force(f(S), sA, q). We conclude that force(S, f(sA), q) ⊆ force(f(S), sA, q). The direction ⊇ follows
easily from the definitions of m and f . ut

Proof of Theorem 3.1

Proof. We prove the theorem by showing that for all φ, we have true(S, φ) = true(f(S), φ). We use induction
on complexity of φ. The base case for atomic formulas and the inductive steps for Boolean connectives are
trivial, while the case of 〈〈A〉〉 © φ is a straightforward application of lemma 3.2. For the cases of 〈〈A〉〉�φ
and 〈〈A〉〉φUψ we rely on the following fixed point characterizations, which are well-known to hold for atl,
see for instance [3], and are also easily verified against definition 2.2:

〈〈A〉〉�φ↔ φ ∧ 〈〈A〉〉 © 〈〈A〉〉�φ
〈〈A〉〉φ1Uφ2 ↔ φ2 ∨ (φ1 ∧ 〈〈A〉〉 © 〈〈A〉〉φ1Uφ2

(3)

We show the induction step for 〈〈A〉〉�φ, taking as induction hypothesis true(S, φ) = true(f(S), φ). The
first equivalence above identifies Q′ = true(S, 〈〈A〉〉�φ) as the maximal subset of Q such that φ is true
at every state in Q′ and such that A can enforce a state in Q′ from every state in Q′, i.e. such that
∀q ∈ Q′ : ∃Q′′ ∈ force(q, A) : Q′′ ⊆ Q′. Notice that a unique such set always exists. This is clear since the
union of two sets satisfying the two requirements will itself satisfy them (possibly the empty set). The first
requirement, namely that φ is true at all states in Q′, holds for S iff if holds for f(S) by induction hypothesis.
Lemma 3.2 states force(S, q,A) = force(f(S), q, A), and this implies that also the second requirement holds
in S iff it holds in f(S). From this we conclude true(S, 〈〈A〉〉�φ) = true(f(S), 〈〈A〉〉�φ) as desired. The case
for 〈〈A〉〉φUψ is similar, using the second equivalence. ut

9



Proof of Proposition 4.2

Proof. It is clear that for any S ∈ f−(M), running mcheck(S, φ) and mcheck(M,φ), a difference in overall
complexity can arise only from a difference in the complexity of enforce. So we compare the complexity of
enforce(S,A, q,Q′′) and enforce(M,A, q,Q′′) for some arbitrary q ∈ Q, Q′′ ⊆ Q. The complexity in both
cases involves passing through all complete extensions of all strategies for A at q. The sizes of these sets are
can be compared as follows, the first inequality is an instance of equation 1 and the equalities follow from
definition of f and the fact that M = f(S).

∏

r∈R

(
(|Ar,q|+ (A(r, q)− 1))!

|Ar,q|!(A(r, q)− 1)!

)
×
∏

r∈R

(
((|R(r, q)| − |Ar,q|) + (A(r, q)− 1))!

(|R(r, q)| − |Ar,q|)!(A(r, q)− 1)!

)

≤
(∏

r∈R
A(r, q)|Ar,q| ×

∏

r∈R
A(r, q)|R(r,q)|−|Ar,q|

)

=
∏

r∈R


 ∏

a∈Ar,q

A(r, q)


×

∏

r∈R


 ∏

a∈R(a,r)\Ar,q

A(r, q)




=


∏

a∈A
da(q)×

∏

a∈A\A

da(q)


 =

∏

a∈A
da(q)

We started with the number of profiles (transitions) we need to inspect when running enforce on S at
q, and ended with the number of action tuples (transitions) we need to inspect when running enforce on
M = f(S). Since we showed the first to be smaller or equal to the latter and the execution of all other
elements of mcheck are identical between S and M , the claim follows. ut
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