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Indicative conditional statements of the form “if X, then Y” constitute a large part of the
evidence that we obtain. But how should we change our beliefs in the light of such evidence?
This question has prompted a huge literature. In a recent survey of the literature, Douven
(2011a) points out that much work has been done in the context of belief revision (see Boutilier
and Goldszmidt (1995) and Kern-Isberner (1999, 2001)). While these works are primarily
concerned with categorical belief, an account of updating probabilistic belief by learning
(probabilistic) conditional information is still to be formulated. The goal of this paper is to
make some progress towards this goal.

Several updating procedures have been studied in relation to conditionals while non has provided
a solution that can be applied to the problem in general. The most straight forward treatment
of conditionals is to identify the indicative conditional with the material conditional, in which
case we can replace A → B by ¬A ∨ B. This however, as was pointed out by Popper and Miller,
will always leave the updated probability of the antecedent of the conditional at most as high
as its prior probability, that is, the posterior probability of A is always smaller than its prior
probability after having learned that A → B. In particular if 0 < P (A) < 1 and P (B|A) < 1

P ′(A) = P (A|¬A ∨B) < P (A).

This however, is highly unintuitive in certain cases. An alternative updating rule proposed by
David Lewis (1976) is called imaging. This account works in a possible world setting where a
conditional is true if its consequence holds true in the closest possible world where its antecedent
is true. Imaging on φ then transfers the probability of every world in which φ is false to its
closest world where φ holds. It turns out, however, that this proposal also fails to do justice to
some of our intuitive judgments. (see Douven (2011a) for a detailed study).

Another proposal for probabilistic updating after having learned an indicative conditional is to
request that the posterior probability distribution minimizes the Kullback-Leibler distance to
the prior probability distribution, taking the learned information as a constraint (expressed as a
conditional probability statement) into account. This procedure, which we shall study in details,
has been criticized in the literature based on several clever examples. The most famous one is
perhaps the Fraassen’s (1981) Judy Benjamin example. This example was for long thought not
to have any Bayesian solution until recently Douven and Romeijn (2011) proposed a solution

∗Tilburg Center for Logic and Philosophy of Science, Tilburg University, PO Box 90153, 5000 LE, Tilburg
(The Netherlands) – http://www.stephanhartmann.org – s.hartmann@uvt.nl.
†Tilburg Center for Logic and Philosophy of Science, Tilburg University, PO Box 90153, 5000 LE, Tilburg

(The Netherlands) – S.RafieeRad@uvt.nl.

1



based on Adam’s conditioning rule defined as follows: let A and B be such that P (B |A) does not
have extreme values, and that the conditional probability is updated from P (B|A) to P ′(B|A),
then

P ′(C) = P (A ∧B ∧ C)
P ′(B |A)

P (B |A)
+ P (A ∧ ¬B ∧ C)

P ′(¬B |A)

P (¬B |A)
+ P (¬A ∧ C).

This along with the assumption that upon learning the conditional A → B, one sets the condi-
tional probability P (B|A) = 1 gives an updating rule for learning a conditional A→ B as

P ′(C) = P (C | ¬A)P (¬A) + P (C |A ∧B)P (A).

Here however the updating rule is such that learning a conditional will have no effect on the
probability of its antecedent since

P ′(A) = P (A | ¬A)P (¬A) + P (A |A ∧B)P (A) = P (A)

which is unintuitive in many cases.

In this paper, we revisit three examples put forward in the literature, Fraassen’s Judy Benjamin
example and two example put forward by Douven and collaborators and show that one obtains
intuitively correct results for the posterior probability distribution using the Kullback-Leibler
distance minimization if the underlying probabilistic model reflects the causal structure of the
scenario in question.

1 The Kullback-Leibler Distance and Probabilistic Updat-
ing

The Kullback-Leibler distance DKL(P ′||P ) measures the expected difference in the informative-
ness of two probability distributions P ′ and P (from the point of view of P ′). Let S1, . . . , Sn be
the possible values for a random variable S over which distributions P ′ and P are defined. The
Kullback-Leibler distance between P ′ and P is then given by

DKL(P ′||P ) :=

n∑
i=1

P ′(Si) log
P ′(Si)

P (Si)
. (1)

It is interesting to note that DKL(P ′||P ) is neither symmetric nor does it satisfy the triangle
inequality. It is nevertheless very popular as a measure for the distance between two probability
distributions. See, for example, the works by Paris (1990, 1994), Paris and Venkovska (1997)
and Williamson (2005, 2008).

The Kulback-Leibler distance has also been used to justify probabilistic updating (Diaconis and
Zabell 1982). To make ourselves familiar with the Kulback-Leibler distance and to introduce the
methodology which we use in this paper, we shortly show how this works. Consider two binary
propositional variables.1 The variable H has two values. H: “The hypothesis holds”, and ¬H:
“The hypothesis does not hold”. The variable E has the values E: “The evidence obtains”, and
¬E: “The evidence does not obtain”. The prior joint distribution over H and E is given by

P (H,E) = α , P (H,E) = β

P (H,E) = γ , P (H,E) = δ , (2)

1Throughout this paper we follow the convention that propositional variables are printed in italic script, and
that the instantiations of these variables are printed in roman script. See Bovens and Hartmann (2003).
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with α+ β + γ + δ = 1. Next, we learn that the evidence E obtains. This is a constraint on the
posterior distribution P ′ which amounts to

P ′(E) = 1 . (3)

If we set

P ′(H,E) = α′ , P ′(H,E) = β′

P ′(H,E) = γ′ , P ′(H,E) = δ′ . (4)

then eq. (3) implies that
α′ + γ′ = 1 (5)

and (as α′ + β′ + γ′ + δ′ = 1) that β′ = δ′ = 0. Hence, the posterior distribution is given by

P (H,E) = α′ , P (H,E) = 0

P (H,E) = 1− α′ , P (H,E) = 0 . (6)

Let us now calculate the Kulback-Leibler distance between P ′ and P :

DKL(P ′||P ) :=
∑
H,E

P ′(H,E) log
P ′(H,E)

P (H,E)

= α′ log

(
α′

α

)
+ (1− α′) log

(
1− α′

γ

)
(7)

To find the minimum of DKL(P ′||P ), we differentiate this expression by α′ and obtain after some
algebra:

∂DKL

∂α′ = log

(
γ

α
· α′

1− α′

)
(8)

To find the minimum, we set the latter expression equal to zero and obtain:

α′ =
α

α+ γ
(9)

Hence, using eq. (5),

γ′ =
γ

α+ γ
(10)

We then obtain for the posterior probability of H:

P ′(H) = α′ + β′ =
α

α+ γ
=
P (H,E)

P (H)

= P (H|E) (11)

To complete the proof, we calculate

∂2DKL

∂α′2 =
1

α′(1− α′)
> 0, (12)

which shows that we have indeed found a minimum. Hence, we have shown that Bayes Rule
follows from minimizing the Kulback-Leibler distance between the posterior distribution and
the prior distribution, if one takes the learned information as a constraint on the posterior
distribution into account. In short the Kullback-Leibler distance minimization updating
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procedure chooses the posterior distribution that accommodates the new information and
otherwise stays information theoretically as close as possible to the prior distribution.

In this paper we will show that if one considers the complete causal structure of the
problem, using the similar updating procedure, i.e. Kullback-Leibler distance minimization, one
can account for the intuitive results that are expected from updating probabilistic belief by
learning conditional evidence as manifested in the examples by van Fraassen and Douven et al..
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