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This paper is based on research in the area of mathematics without actual infinity as started by Jan
Mycielski in [Myc81] and further developed by Mostowski in [Mos01], [Mos03] and numerous others. The
general aim of this research is giving an answer to the question what mathematical tools are available, if only
finite but potentially infinite domains are considered. Potential infinity here stands in opposition to actual
infinity. Both of these notions were introduced by Aristotle and later popularized in the area of mathematics
by David Hilbert in [Hil26]. An actually infinite set is a collection consisting of infinitely many elements that
can be accessed at once. A potentially infinite set is a collection of only finitely many elements that can
always be expanded by additional ones, according to some well defined rule.

In [Mos01] Mostowski obtained a result stating which mathematical relations can be meaningfully de-
scribed in potentially infinite world. It turned out that these relations are exactly the relations that are
algorithmically learnable, as defined independently by Putnam in [Put65] and Gold in [Gol65] and [Gol67].
This result was in favor of philosophical intuitions formulated by Aristotle, according to which the notion
of potential infinity is sufficient to describe the whole humans’ cognition. From the technical point of view,
the result made it possible to use tools developed in the course of studying algorithmic learnability to do
research on potentially intinite mathematics and vice versa.

One natural way to further develop Mostowski’s result was to find other ways to describe the set of
relations representable in potentially infinite domain. In this paper we formulate a type of games that serve
this purpose.

Mostowski used the notions of finite models domain, shortly FM—domain, and mathematical representabil-
ity in finite models, shortly FM-representability, to prove his result. These notions are defined as follows.

Definition 1. Let IN be the standard arithmetical model, i.e. ({0,1,2,...},4, x,0). Let IN,, be a submodel
of IN consisting of n elements, i.e. ({0,...,n— 1}, 4+, x"=1 0,n —1), where +"~1 and x"~1 are the well
known arithemtical operations treated as ternary relations (since they will obviously be undefined for some
inputs in a finite domain) whose arguments are at most n — 1. We additionally distinguish the n — 1-th
element to be able to easiliy refer to the maximal element.

We say that the finite models domain of N, or FM(IN), is the family of models IN,,, for all n.

Definition 2. Let R C IN". We say that the formula ¢ F M -represents R if for every ay,...,a, the following
conditions are true:

— if R(a1,...,ay), then there is a k such that for allt > k Ny = ¢(aq,...,an)
— if “R(aq,...,a,), then there is a k such that for allt > k N E ~¢p(aq,...,an),

where IN,, is the finite model ({0,...,n — 1}, +"~1 x"~1) from FM(IN).
We then say that a relation R is F M —representable if it is F M —represented by some formula ¢.

The result from Mostowski is the following.
Theorem 1. Let R be a realation on natural numbers. Then the following are equivalent:

— R is AS in the arithmetical hierarchy
— R is recursive with recursively enumerable oracle
— R is of degree <0 in terms of Turing degrees



— R is algorithmically learnable
— R is FM —representable

O

The notion of algorithmic learnability used in the above theorem comes from Putnam and Gold who
defined it as follows.

Definition 3. Let R C IN". A recursive function f:IN""' — IN is said to be a learning function for the
relation R, if for any ay,...,a, the following is true:

— there is an s such that for allt > s f(ay,...,an,t) =1 iff R(ay,...,ay) is true
— there is an s such that for allt > s f(ay,...,an,t) =0 iff R(ai,...,ay) is false

We say that R is learnable iff there is a recursive function f that learns R.

Since all the learning functions are computable, one can think of them as Turing machines that work on
inputs ai, ..., a, and on additional input ¢, which is meant to be the indicator of time spent on learning. For
any t starting with 0 such a machine is started and it gives the output ”yes” iff it thinks that a,...,a, € R
and it gives the output "no” otherwise. Then the input ¢ is incremented and the machine is started again.
If after some finite number of runs the answers of the machine stabilize (i.e. they don’t change ever after),
then this is a learning machine for R. If they don’t stabilize, then this is not a learning machine for R.

As an example, we can take a machine that takes two inputs: a first order formula ¢ (or its Gédel number,
to be precise) and a natural number ¢, and returns ”yes” if there is a first—order proof of ¢ of length ¢ and "no”
otherwise. The answers of this machine will obviously stabilize — they will always be "no”, if a particular ¢
is not a first—order theorem and otherwise there will be some k such that ¢ has a proof of length k + n, for
any n (since it’s trivially true that if ¢ has a proof of lenth &, then it has a proof of lenth k + 1). Therefore,
the relation of being a provable first-order logic formula is learnable.

In order to describe the set of F'M-representable relations and at the same time learnable relations
in terms of Game Theory, we propose the following type of game. There are two players: PLAYER 1 and
PLAYER 2 who are given a first—order arithmetical formula ¢(z1,...,zx) with k free variables and a k—tuple
of natural numbers aq,...,a.

PLAYER 1 chooses a natural number n; such that the sentence p(aq,...,ax) is true in model IN,,, from
FM(IN).

PLAYER 2 chooses a natural number m; greater than n; and such that the sentence —p(aq,...,ax) is
true in model IN,,, from FM(IN).

PLAYER 1 chooses a natural number ns greater than m; and such that the sentence p(aq,...,ax) is
true in model IN,,, from FM(IN).

... and so on...

The player who has no possible move loses.

The following holds.

Theorem 2. Let R be a k—ary realation on natural numbers. Then the following are equivalent:

— There is a first-order arithmetical formula ¢(x1,...,xx) such that for all k-tuples of natural numbers
the game given by the formula and the k—tuple is determined and PLAYER 1 has a winning strategy
exactly when the k—tuple is in R.

— R is AY in the arithmetical hierarchy

R is recursive with recursively enumerable oracle

R is of degree < 0’ in terms of Turing degrees

— R is algorithmically learnable

R is F M —representable



Proof. Suppose there is a first—order arithmetical formula ¢(z1,...,zx) such that for all k—tuples of natural
numbers a game of our type given by the formula ¢ and a fixed k—tuple is determined and PLAYER 1 has
a winning strategy exactly when the k—tuple is in R.

Let ay,...,ar be natural numbers. If R(aq,...,ax) holds, then PLAYER 1 has a winning strategy in m

moves, for some m. Therefore, by definition of our game, for all ¢ > m IN; = ¢(a1,...,ax). If, on the other
hand, R(a,...,ax) doesn’t hold, then PLAYER 2 has a winning strategy in m moves, for some m and for
all t > m Ny = —é(ay,...,ar). Therefore ¢(z1,...,x;) FM-represents R.

Let’s assume conversely that R is FM-represented by some formula ¢(x1,...,zx). Let aq,...,a; be

natural numbers. If R(ay,...,ax) holds, then there is an m such that for all ¢t > m Ny = ¢(aq,...,ax).
Therefore in a game of our type given by ¢ and ay,...,ar PLAYER 1 has a winning strategy consinsting of
one move — he just has to give m and PLAYER 2 has no move. If R(a,...,ax) doesn’t hold, then there is
an m such that for all t > m IN; | —¢(ay,...,ax). In a game of our type given by ¢ and a4, ...,a; PLAYER
2 wins by giving m regardless of what PLAYER 1 does in his first move.O

Mostowski pointed out in [Mos12] that if we add a restriction that the strategies of both players must
be recursive, then these games become nontrivial — the number of moves in a determined game will be un-
computable in general case. This is because such recursive strategies can be easily transformed into recursive
learning functions and giving a point where such a function stabilizes is a A9 problem in general case.
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