What makes a good teacher? A Computational Study

Nina Gierasimczuk

Institute for Logic, Language and Computation Universiteit van Amsterdam

Logic Tea, November 30th 2009, Amsterdam

3

イロン イヨン イヨン イヨン

OUTLINE

MOTIVATION

A HIGH-LEVEL PERSPECTIVE

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

A LOW-LEVEL PERSPECTIVE

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

CONCLUSIONS

マロト イヨト イヨト

OUTLINE

MOTIVATION

A HIGH-LEVEL PERSPECTIVE

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

A LOW-LEVEL PERSPECTIVE

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

CONCLUSIONS

3

GENERAL MOTIVATION: LEARNING

- Learning getting to know and generalizing:
 - language learning (grammar inference),
 - scientific and medical (empirical) inquiry, etc.
- Worked out in formal learning theory and applied paradigms.
- Analyzing complexity is difficult.

3

・ロト ・同ト ・ヨト ・ヨト

GENERAL MOTIVATION: TEACHING

- Focus on single agent learning.
- Arbitrary environment.
- But complexity depends on data.
- Learning can be facilitated by clever teaching.
 - Is there a point to even start?
 - What information is relevant?
 - What is the most efficient way?

• E • • E •

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

OUTLINE

MOTIVATION

A HIGH-LEVEL PERSPECTIVE

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

A LOW-LEVEL PERSPECTIVE

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

CONCLUSIONS

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: ILLUSTRATION

A class of hypotheses, with one distinguished goal and Learner generates a map of the possible mind changes of Learner.

æ

<ロ> (日) (日) (日) (日) (日)

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: ILLUSTRATION

A class of hypotheses, with one distinguished goal and Learner generates a map of the possible mind changes of Learner.

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: ILLUSTRATION

A class of hypotheses, with one distinguished goal and Learner generates a map of the possible mind changes of Learner.

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: ILLUSTRATION

A class of hypotheses, with one distinguished goal and Learner generates a map of the possible mind changes of Learner.

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: ILLUSTRATION

A class of hypotheses, with one distinguished goal and Learner generates a map of the possible mind changes of Learner.

æ

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: ILLUSTRATION

A class of hypotheses, with one distinguished goal and Learner generates a map of the possible mind changes of Learner.

2

イロン イヨン イヨン イヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

MOTIVATION: LEARNING/TEACHING GAME

- Learning situations as graphs.
- Learning as a game between Teacher and Learner played on a graph:
 - A step-by-step process in which Learner changes his state.
 - Successful if the goal is eventually reached.
 - Teacher's feedback rules out possible changes of mind.

イロト イヨト イヨト

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

LEARNING AS A GRAPH-GAME (1)

Learning Model	The graph
hypotheses	states
correct hypothesis	goal state
possibility of a mind change from hypothesis <i>a</i> to hypothesis <i>b</i>	edge from <i>a</i> to <i>b</i>
a mind change from hypothesis <i>a</i> to hypothesis <i>b</i>	transition from <i>a</i> to <i>b</i>
giving a counterexample that eliminates the possibility of a mind change from <i>a</i> to <i>b</i>	removing a transition be- tween <i>a</i> and <i>b</i>

æ

イロン 不同と 不同と 不同と

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE?

æ

・ロン ・四と ・ヨン ・ヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE?

æ

・ロン ・四と ・ヨン ・ヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE?

æ

・ロン ・回 と ・ ヨン ・ ヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE?

æ

・ロン ・回 と ・ ヨン ・ ヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE?

æ

・ロン ・回 と ・ ヨン ・ ヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE LEARNING GAME

DEFINITION

A Sabotage Learning Game is a Game played between Learner and Teacher on a directed multi-graph with an initial vertex and a "goal" vertex.

・ロン ・回と ・ヨン・

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

LEVELS OF COOPERATIVENESS

æ

・ロン ・回と ・ヨン・

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

LEVELS OF COOPERATIVENESS

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

LEVELS OF COOPERATIVENESS

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

VARIOUS SCENARIOS

Game	Winning Condition
<i>SLG_{UE}</i>	Learner wins iff he reaches the goal state,
unhelpful T., eager L.	Teacher wins otherwise.
SLG_{HU} helpful T., unwilling L.	Teacher wins iff Learner reaches the goal state, Learner wins otherwise.
SLG _{HE}	Both players win iff Learner reaches the goal state,
helpful T., eager L.	Both lose otherwise.

æ

イロン イヨン イヨン イヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE MODAL LOGIC

SABOTAGE MODEL

Take a finite Σ . The model $M = \langle W, (R_{a_i})_{a_i \in \Sigma}, Val \rangle$ is given by

 $W \neq \emptyset, \qquad R_{a_i} \subseteq W \times W, \qquad Val: \texttt{PROP} \rightarrow \mathcal{P}(W)$

REMOVAL OPERATION Let $M = \langle W, \{R_a \mid a \in \Sigma\}, Val \rangle$ be a Sabotage Model.

$$M^{a_i}_{(v,v')} := \langle W, R_{a_1}, \dots R_{a_{i-1}}, R_{a_i} \setminus \{(v,v')\}, R_{a_{i+1}}, \dots R_{a_n}, Val \rangle$$

3

イロン イヨン イヨン イヨン

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

SABOTAGE MODAL LOGIC

SEMANTICS

 $M,w\models \ominus_a\varphi \quad \text{iff} \quad \text{there is } (u,v)\in R_a \text{ s. t. } M^a_{(u,v)},w\models \varphi$

THEOREM

Model checking of SML is PSPACE-complete (combined compl.).

イロン イ部ン イヨン イヨン 三日

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

CHARACTERIZATION RESULTS

Theorem

Game	Existence of winning strategy	Winner
SLG _{UE}	$\gamma_0^{\textit{UE}} := \textit{goal},$	Learner
unhelpful T., eager L.	$\gamma_{\mathit{n}+1}^{\mathit{UE}} := \mathit{goal} \lor \Diamond \boxminus \gamma_{\mathit{n}}^{\mathit{UE}}$	
SLG _{HU}	$\gamma_{0}^{HU}:=\mathit{goal},$	Teacher
helpful T., unwilling L.	$\gamma_{n+1}^{HU} := goal \lor (\diamond \top \land (\Box \diamond \gamma_n^{HU}))$	
SLG _{HE}	$\gamma_{0}^{\textit{HE}}:=\textit{goal},$	Both
helpful T., eager L.	$\gamma_{n+1}^{\textit{HE}} := \textit{goal} \lor \Diamond \Diamond \gamma_n^{\textit{HE}}$	
	(日) (一) (二) (二) (二) (二) (二) (二) (二) (二) (二) (二	

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

Complexity of Sabotage-Type Learning

Theorem

Game	Winning Condition	Complexity
SLG _{UE}	Learner wins iff he reaches the goal state, Teacher wins otherwise	PSPACE- complete
SLG _{HU}	Teacher wins iff Learner reaches the goal state, Learner wins otherwise.	PSPACE- complete
SLG _{HE}	Both players win iff Learner reaches the goal state. Both lose otherwise.	redNL- complete

æ

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

LOCAL VS GLOBAL MOVES

Players' moves are of a different nature:

- Learner moves by *local* transitions.
- Teacher moves by *globally* removing an edge.

Teacher only needs to act when necessary.

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

STRICT VS NON-STRICT ALTERNATION

THEOREM

- 1. Learner has a w.s. in SLG_{UE}^* iff he has a w.s. in SLG_{UE} .
- 2. Teacher has a w.s. in SLG^*_{HU} iff she has a w.s. in SLG_{HU} .
- 3. Teacher and Learner have a joint w.s. in SLG^*_{HE} iff they have a joint w.s. in SLG_{HE} .

COROLLARY

► *SLG*^{*}: same complexity and characterization results as *SLG*.

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

HIGH-LEVEL SUMMARY

Judging learnability/teachability with the assumption of

- 1. full cooperation NL-complete (easy);
- 2. asymmetric obstruction PSPACE-complete (difficult?).

・ロト ・回ト ・ヨト

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

OUTLINE

MOTIVATION

A HIGH-LEVEL PERSPECTIVE

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

A LOW-LEVEL PERSPECTIVE

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

CONCLUSIONS

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

MOTIVATION

- ► High-level analysis, the cooperative case.
- How to make learning efficient?
- Explicit:
 - objects to be learned,
 - structure of information,
 - learning paradigm.

Motivation A High-Level Perspective	Finite Identifiability The Computational Complexity of Finite Identifiability Check	
A Low-Level Perspective	Minimal Definite Finite Tell-tale	
Conclusions	Minimal Definite Finite Tell-tale of Minimal Size	

FRAMEWORK

 $\mathcal{L} = \{L_1, L_2, \ldots\}$ — an indexed family of languages.

DEFINITION (POSITIVE PRESENTATION)

By a positive presentation of L, ε , we mean an infinite sequence of elements from L such that it enumerates all and only the elements from L allowing repetitions.

DEFINITION

- Let \mathcal{L} be a class of languages, then $\mathcal{I}_{\mathcal{L}} = \{i \mid L_i \in \mathcal{L}\};$
- $\varphi: (\bigcup \mathcal{L})^* \to \mathcal{I}_{\mathcal{L}}$ is a learning function.

- 本部 とくき とくき とうき

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

FINITE IDENTIFIABILITY

DEFINITION (FINITE IDENTIFICATION)

A learning function φ :

- 1. finitely identifies $L_i \in \mathcal{L}$ on ε iff, when inductively given ε , at some point φ outputs *i*, and stops;
- 2. finitely identifies $L_i \in \mathcal{L}$ iff it finitely identifies L_i on every ε for L_i ;
- 3. finitely identifies \mathcal{L} iff it finitely identifies every $L_i \in \mathcal{L}$;
- 4. a class \mathcal{L} is finitely identifiable iff there is a learning function φ that finitely identifies \mathcal{L} .

イロン 不同と 不同と 不同と

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

Definition (Mukouchi 1992)

A set S_i is a definite finite tell-tale, DFTT, of $L_i \in \mathcal{L}$ if

- 1. $S_i \subseteq L_i$,
- 2. S_i is finite, and
- 3. for any index j, if $S_i \subseteq L_j$ then $L_i = L_j$.

THEOREM (MUKOUCHI 1992)

A class \mathcal{L} is finitely identifiable from positive data iff there is an effective procedure that enumerates all elements of a definite finite tell-tale S_i of L_i for any *i*.

Each set has a finite subset that distinguishes it from all other sets.

Motivation	Finite Identifiability	
A High-Level Perspective	The Computational Complexity of Finite Identifiability Check	
A Low-Level Perspective	Minimal Definite Finite Tell-tale	
Conclusions	Minimal Definite Finite Tell-tale of Minimal Size	

DEFINITION

 \mathcal{L} — a class of languages, and $x \in \bigcup \mathcal{L}$. The eliminating power of x wrt \mathcal{L} is determined by the function $El_{\mathcal{L}} : \bigcup \mathcal{L} \to \wp(\mathcal{I}_{\mathcal{L}})$, such that:

$$El_{\mathcal{L}}(x) = \{i | x \notin L_i\}.$$

Additionally, we will use $El_{\mathcal{L}}(X)$ for $\bigcup_{x \in X} El_{\mathcal{L}}(x)$.

 $El_{\mathcal{L}}(x)$ gives indices of sets in \mathcal{L} that are inconsistent with x.

3

向下 イヨト イヨト

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

FINITE IDENTIFIABILITY AND ELIMINATING POWER

THEOREM

A class \mathcal{L} is finitely identifiable from positive data iff there is an effective procedure that for any *i* enumerates all elements of a finite set $S_i \subseteq L_i$, such that

$$El_{\mathcal{L}}(S_i) = \{j | L_j \in \mathcal{L}\} - \{i\}.$$

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

FINITE TEACHABILITY IS IN PTIME

Theorem

Checking whether a finite class of finite sets is finitely identifiable is polynomial wrt the size of the class.

Proof.

- 1. Compute $El_{\mathcal{L}}(x)$.
- 2. Check whether for each $L_i \in \mathcal{L}$, $El_{\mathcal{L}}(L_i) = \mathcal{I}_{\mathcal{L}} \{i\}$.

Motivation	Finite Identifiability The Commutational Community of Finite Identifiability Check	
A Low-Level Perspective	Minimal Definite Finite Tell-tale	
Conclusions	Minimal Definite Finite Tell-tale of Minimal Size	

DEFINITION

 \mathcal{L} — a finitely identifiable class of languages, and $L_i \in \mathcal{L}$. A minimal DFTT of L_i in \mathcal{L} is $S_i \subseteq L_i$, such that

1. S_i is a DFTT for L_i in \mathcal{L} , and

2.
$$\forall X \subset S_i \ El_{\mathcal{L}}(X) \neq \{j | j \in \mathcal{I}_{\mathcal{L}}\} - \{i\}.$$

3

• = • • = •

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

EXAMPLE

$$\mathcal{L} = \{ L_1 = \{1, 3, 4\}, L_2 = \{2, 4, 5\}, L_3 = \{1, 3, 5\}, L_4 = \{4, 6\} \}$$

x	$El_{\mathcal{L}}(x)$		
1	{2,4}	set	a minimal DFTT
2	$\{1, 3, 4\}$	$\{1, 3, 4\}$	{3,4}
3	{2,4}	$\{2, 4, 5\}$	$\{4, 5\}$
4	{ <mark>3</mark> }	$\{1, 3, 5\}$	{3,5}
5	{1, 4}	{4,6}	{6}
6	$\{1, 2, 3\}$		

æ

・ロン ・四と ・ヨン ・ヨン

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale

MINIMAL FINITE TEACHABILITY IS IN PTIME

Theorem

Let \mathcal{L} be a finitely identifiable finite class of finite sets. Finding a minimal DFTT of $L_i \in \mathcal{L}$ can be done in polynomial time wrt to the size of the class.

Proof.

- 1. Set $X := L_i$.
- 2. Look for $x \in X$ such that $El(X \{x\}) = \mathcal{I}_{\mathcal{L}} \{i\}$.
 - ▶ If no such, then X is the desired reduct.
 - If there is, set $X := X \{x\}$, and repeat the procedure.

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

EFFICIENT TEACHABILITY IS NP-COMPLETE

DEFINITION

 \mathcal{L} — a finitely identifiable class of languages, and $L_i \in \mathcal{L}$. A minimal DFTT of minimal size of L_i in \mathcal{L} is a smallest $S_i \subseteq L_i$, such that

- 1. S_i is a DFTT for L_i in \mathcal{L} , and
- 2. $\forall X \subset S_i \ El_{\mathcal{L}}(X) \neq \{j | j \in \mathcal{I}_{\mathcal{L}}\} \{i\}.$

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

FINDING MINIMAL DFTTS OF MINIMAL SIZE

Perform a search through all the subsets of L_i starting from singletons, looking for the first $X_i \subseteq L_i$, such that $El_{\mathcal{L}}(X_i) = \mathcal{I}_{\mathcal{L}} - \{i\}.$

3

イロン イヨン イヨン イヨン

Motivation	Finite Identifiability
A High-Level Perspective	The Computational Complexity of Finite Identifiability Check
A Low-Level Perspective	Minimal Definite Finite Tell-tale
Conclusions	Minimal Definite Finite Tell-tale of Minimal Size

EXAMPLE

$$\mathcal{L} = \{L_1 = \{1, 3, 4\}, L_2 = \{2, 4, 5\}, L_3 = \{1, 3, 5\}, L_4 = \{4, 6\}\}.$$

x	$El_{\mathcal{L}}(x)$		
1	{2,4}	set	min DFTTs of min size
2	$\{1, 3, 4\}$	$\{1, 3, 4\}$	$\{1,4\}$ or $\{3,4\}$
3	{2,4}	$\{2, 4, 5\}$	{2}
4	{ <mark>3</mark> }	$\{1, 3, 5\}$	$\{1,5\}$ or $\{3,5\}$
5	$\{1, 4\}$	{4,6}	{6}
6	$\{1, 2, 3\}$		

æ

Motivation A High-Level Perspective	Finite Identifiability The Computational Complexity of Finite Identifiability Check
A Low-Level Perspective	Minimal Definite Finite Tell-tale
Conclusions	Minimal Definite Finite Tell-tale of Minimal Size

NP-COMPLETENESS

Min DFTTs of min size - a complete search through a large space. DEFINITION (MINDFTTMIN PROBLEM)

INSTANCE A finite class of finite sets \mathcal{L} , a set $L_i \in \mathcal{L}$, and a positive integer $k \leq |L_i|$.

QUESTION Is there a minimal DFTT $X_i \subseteq L_i$ of size $\leq k$?

Is $L_i \in \mathcal{L}$ finitely teachable from a sample of size k or smaller?

伺い イヨト イヨト

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

NP-COMPLETENESS

THEOREM The MINDFTTMIN Problem is NP-complete.

DEFINITION (MINDFTTMIN PROBLEM)

INSTANCE A finite class of finite sets \mathcal{L} , a set $L_i \in \mathcal{L}$, and a positive integer $k \leq |L_i|$.

QUESTION Is there a minimal DFTT $X_i \subseteq L_i$ of size $\leq k$?

DEFINITION (MINIMAL COVER PROBLEM)

- INSTANCE: Collection P of subsets of a finite set F, positive integer $k \leq |P|$.
- QUESTION: Does P contain a cover for X of size k or less, i.e. a subset $P' \subseteq P$ with $|P'| \leq k$ such that every element of X belongs to at least one member of P'?

3

・ロト ・回ト ・ヨト ・ ヨト

 Motivation
 Finite Identifiability

 A High-Level Perspective
 The Computational Complexity of Finite Identifiability Check

 A Low-Level Perspective
 Minimal Definite Finite Tell-tale

 Conclusions
 Minimal Definite Finite Tell-tale of Minimal Size

LOW-LEVEL SUMMARY

- Judging finite teachability PTIME;
- Teaching in a
 - 1. relevant way PTIME (easy);
 - 2. the most efficient way NP-complete (difficult?).

イロン イヨン イヨン イヨン

OUTLINE

MOTIVATION

A HIGH-LEVEL PERSPECTIVE

Sabotage Learning Games Complexity of Sabotage-Type Learning Non-strict Alternation

A LOW-LEVEL PERSPECTIVE

Finite Identifiability The Computational Complexity of Finite Identifiability Check Minimal Definite Finite Tell-tale Minimal Definite Finite Tell-tale of Minimal Size

CONCLUSIONS

æ

- - 4 回 ト - 4 回 ト

CONCLUSIONS AND FURTHER WORK

Summary:

- Teachability can give a measure of difficulty for learning.
- Different approaches to the same epistemological problem: game theory, modal logic, formal learning theory, computational complexity.
- Higher resolution higher complexity.

Further work:

- Specific graph structures for specific learning algorithms.
- Applicability to belief revision and belief merge.

References

- N. Gierasimczuk, L. Kurzen and F. Velázquez-Quesada, Learning and Teaching as a Game: A Sabotage Approach, X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 119-132, 2009.
- N. Gierasimczuk and D. de Jongh, On the Minimality of Definite Tell-tale Sets in Finite Identification, manuscript 2009.

