IDENTIFICATION THROUGH INDUCTIVE VERIFICATION Application to Monotone Quantifiers

Nina Gierasimczuk

Institute for Logic, Language and Computation Universiteit van Amsterdam

> Logic and Intelligent Interaction ESSLLI08 August 11, 2008

OUTLINE

- QUANTIFIERS
 - Quantifiers of type $\langle 1 \rangle$
 - Quantifiers of type $\langle 1,1\rangle$
- **3** COMPUTATIONAL EPISTEMOLOGY
- 4 Identifiability
- **5** GENERAL QUESTION

PLAN

- **QUANTIFIERS**
 - Quantifiers of type $\langle 1 \rangle$
 - Quantifiers of type $\langle 1,1\rangle$
- **3** Computational Epistemology
- 4 IDENTIFIABILITY
- 5 GENERAL QUESTION

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Epistemological properties of quantifiers.
- Their influence on NL comprehension.
- Linking them to learnability features.
- Compare notions of decidability and identifiability.

Quantifiers of type (1) Quantifiers of type (1, 1)

PLAN

QUANTIFIERS

- Quantifiers of type (1)
- Quantifiers of type $\langle 1, 1 \rangle$
- **COMPUTATIONAL EPISTEMOLOGY**
- **GENERAL OUESTION**

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

QUANTIFIERS LINDSTRÖM DEFINITION

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

DEFINITION

 $Q_{\mathbf{M}}$ is MON \uparrow iff: if $A \subseteq A' \subseteq M$, then $Q_{\mathbf{M}}(A)$ implies $Q_{\mathbf{M}}(A')$.

DEFINITION

 $Q_{\mathbf{M}}$ is MON \downarrow iff: if $A' \subseteq A \subseteq M$, then $Q_{\mathbf{M}}(A)$ implies $Q_{\mathbf{M}}(A')$.

э

A D > A B > A B > A B >

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

DEFINITION

Q of type $\langle 1 \rangle$ satisfies *EXT* iff for all models **M** and **M**': $A \subseteq M \subseteq M'$ implies $Q_{\mathbf{M}}(A) \iff Q_{\mathbf{M}'}(A)$.

æ

・ロ・ ・ 四・ ・ 回・ ・ 回・

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

QUANTIFIERS OF TYPE
$$\langle 1, 1 \rangle$$

Preconditions

Restriction to CE quantifiers.

DEFINITION

Let Q be of type $\langle 1, 1 \rangle$. Then for all M, M', all $A, B \subseteq M$, and $A', B' \subseteq M'$: (ISOM) If $(M, A, B) \cong (M', A', B')$, then $Q_M(A, B) \Leftrightarrow Q_{M'}(A', B')$. (CONS) $Q_M(A, B) \Leftrightarrow Q_M(A, A \cap B)$. (EXT) If $M \subseteq M'$, then $Q_M(A, B) \Leftrightarrow Q_{M'}(A, B)$.

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

$\begin{array}{l} CE \ QUANTIFIERS \\ (ISOM) \ IF \ (M, A, B) \cong (M', A', B'), \ \text{then} \ \mathsf{Q}_{\mathsf{M}}(A, B) \Leftrightarrow \mathsf{Q}_{\mathsf{M}'}(A', B') \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

CE QUANTIFIERS - EXT (EXT) IF $M \subseteq M'$, then $Q_M(A, B) \Leftrightarrow Q_{M'}(A, B)$

12

ヘロア 人間 アメヨアメヨア

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

CE QUANTIFIERS - CONS (CONS) $Q_M(A, B) \Leftrightarrow Q_M(A, A \cap B)$

æ

イロト イヨト イヨト イヨト

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

CE QUANTIFIERS

The scope we are interested in for both $\langle 1 \rangle$ and $\langle 1, 1 \rangle$ cases.

<ロ> <同> <同> < 同> < 同> < 同> <

æ

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

Q of type $\langle 1, 1 \rangle$ Monotonicity

DEFINITION

Q of type $\langle 1, 1 \rangle$ is MON[↑] iff: If $A \subseteq M$ and $B \subseteq B' \subseteq M$, then $Q_M(A, B) \Rightarrow Q_M(A, B')$.

æ

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

DEFINITION

Q of type $\langle 1, 1 \rangle$ is PER iff: If $A \subseteq A' \subseteq M$ and $B \subseteq M$, then $Q_M(A, B) \Rightarrow Q_M(A', B)$.

æ

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

EXAMPLES

Determiner	MON ↑	EXT (for $\langle 1 \rangle$)	PER (for $\langle 1, 1 \rangle$)
All	+	-	-
No	-	-	-
Some	+	+	+
At least n	+	+	+
At most n	-	+	-
Exactly n	-	+	-

TABLE: Quantifiers and their properties

æ

Quantifiers of type $\langle 1 \rangle$ Quantifiers of type $\langle 1, 1 \rangle$

MONOTONICITY & LINGUISTICS

- Does monotonicity influence NL comprehension?
- Does monotonicity influence NL learning?
- Monotonicity and inference patterns (B. Geurts).
- Proposal: focus on persistence.

PLAN

• Quantifiers of type $\langle 1,1\rangle$

3 COMPUTATIONAL EPISTEMOLOGY

- IDENTIFIABILITY
- **5** GENERAL QUESTION

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

LOGIC OF RELIABLE INQUIRY - KEVIN KELLY

- Inspired by learning theory.
- Similar framework.
- Verification/falsification in computational setting.

LOGIC OF RELIABLE INQUIRY - KEVIN KELLY

- ε infinite string of data;
- $\varepsilon | n$ finite initial segment of ε through the position n 1;
 - h hypothesis;
 - C correctness relation;
- $C(\varepsilon, h)$ iff h is correct w.r.t. ε ;
 - α an assessment method;

OUT conjectures 1, 0, !.

CERTAINTY IN RELIABLE INQUIRY

DEFINITION

 α produces *b* with certainty on (*h*, ε) iff there is an *n* s.t.:

• $\alpha(h, \varepsilon | n) = !$, and

2
$$\alpha(h, \varepsilon | n + 1) = b$$
, and

• for each m < n, $\alpha(h, \varepsilon | m) \neq !$.

э

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

CERTAINTY IN RELIABLE INQUIRY

DEFINITION

 α verifies *h* with certainty on ε (with respect to *C*) iff α produces 1 with certainty on $(h, \varepsilon) \Leftrightarrow C(\varepsilon, h)$.

DEFINITION

 α refutes *h* with certainty on ε (with respect to *C*) iff α produces 0 with certainty on $(h, \varepsilon) \Leftrightarrow \neg C(\varepsilon, h)$.

DEFINITION

Decidability with certainty is simply verifiability and refutability with certainty at the same time.

э

- At least six bikes are broken. Verifiable with certainty
- An even number of bikes is broken. Verifiable in the limit

э

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Epistemological properties of Q o.t. $\langle 1 \rangle$

- 1 1 enumeration of elements of the universe.
- Assignment of χ_A to each of them.
- Infinite sequence of 0s and 1s.
- In each step checking if finite initial segment satisfies a hypothesis (quantifier sentence).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Epistemological properties of Q o.t. $\langle 1 \rangle$

PROPOSITION

Let Q be FO quantifier of type $\langle 1 \rangle$. Q is MON \uparrow and EXT iff it is verifiable with certainty.

PROPOSITION

Let Q be FO quantifier of type $\langle 1 \rangle$. $\neg Q$ is verifiable with certainty iff Q is falsifiable with certainty.

Epistemological properties of Q o.t. (1, 1)

PROPOSITION

Let Q be FO CE quantifier of type (1, 1). Q is persistent iff it is verifiable with certainty.

PROPOSITION

Let Q be FO CE quantifier of type (1, 1). \neg Q is falsifiable with certainty iff Q is verifiable with certainty.

EXAMPLES

Determiner	verifiable	falsifiable	MON ↑	EXT (for $\langle 1 \rangle$)	PER (for $\langle 1, 1 \rangle$)
All	-	+	+	-	-
No	-	+	-	-	-
Some	+	-	+	+	+
At least n	+	-	+	+	+
At most n	-	+	-	+	-
Exactly n	-	-	-	+	-

TABLE: Quantifiers and their properties

æ

・ロト ・回ト ・ヨト ・ヨト

PLAN

2 QUANTIFIERS

- Quantifiers of type $\langle 1 \rangle$
- Quantifiers of type $\langle 1,1\rangle$
- **3** Computational Epistemology

IDENTIFIABILITY

GENERAL QUESTION

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

IDENTIFIABILITY GAME

- Class of objects is chosen (e.g. class of grammars).
- Player 1 picks out one object from the class (e.g. G).
- Player 1 generates positive instances of this object, repetitions allowed (e.g. words from a language of G).
- Player 2 knows about the class, but he does not know which object is chosen.
- Player 2 has to guess which object Player 1 has in mind.

LEARNING THE SEMANTICS OF NATURAL LANGUAGE Identifiability from text in use

- Class of quantifiers is chosen.
- Player 1 picks one of them (Q)
- Player 2 is presented finite worlds in which Q is true.
- Player 2 has to identify Q.

NUMBER TRIANGLE REPRESENTATION

. . .

Assuming CE, we can represent all relevant models in the form of number triangle.

(0,0) $(1,0) \quad (0,1)$ $(2,0) \quad (1,1) \quad (0,2)$ $(3,0) \quad (2,1) \quad (1,2) \quad (0,3)$ $(4,0) \quad (3,1) \quad (2,2) \quad (1,3) \quad (0,4)$

æ

. . .

NUMBER TRIANGLE REPRESENTATION

- Graphic representation of a class of CE quantifiers.
- In particular: PER.

NUMBER TRIANGLE REPRESENTATION

- Graphic representation of a class of CE quantifiers.
- In particular: PER.

< 172 ▶

.

NUMBER TRIANGLE REPRESENTATION

- Graphic representation of a class of CE quantifiers.
- In particular: PER.

< 172 ▶

.

NUMBER TRIANGLE REPRESENTATION

- Graphic representation of a class of CE quantifiers.
- In particular: PER.

TIEDE'S RESULT

THEOREM

The class of FO PER Q is identifiable from text.

æ

PLAN

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION RELATION BETWEEN VER/FAL HIERARCHY AND IDENTIFIABILITY

Identifiability

certain id from informant

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

Nina Gierasimczuk

GENERAL QUESTION Relation between Ver/Fal hierarchy and identifiability

CONCLUSIONS AND FUTURE WORK

- Epistemological role of monotonicity additional explanation.
- Verification less difficult than falsification?
- Check connections between persistence and comprehension.
- Investigate relationship between identifiability and decidability: learning of NL semantics; new conditions of identifiability.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

TH∀NK YOU!

æ

Nina Gierasimczuk Identification through Inductive Verification

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト