Learning the Semantics of some Natural Language Constructions

Nina Gierasimczuk

Institute for Logic, Language and Computation Universiteit van Amsterdam

> PALMYR-V June 1th, 2007

イロト イボト イヨト イヨト 二日

Outline

Quantifiers

- General Restrictions
- Definition
- Encoding
- Corresponding Devices

Learning

- Identification in the Limit
- Angluin's Algorithm
- Sakakibara's Algorithm

Learning of Quantifiers

Э

→ Ξ → → Ξ →

Outline

Introduction

- Quantifiers
 - General Restrictions
 - Definition
 - Encoding
 - Corresponding Devices
- 3 Learning
 - Identification in the Limit
 - Angluin's Algorithm
 - Sakakibara's Algorithm
- 4 Learning of Quantifiers

э

Quantifiers Learning

- Investigated by van Benthem, Clark, Costa Florencio, Tiede.
- Acquisition of NL quantifiers collecting procedures for computing their denotations.
- Analysing *NL* quantifiers from the point of view of syntax learning models.

3

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Outline

2

Introduction

Quantifiers

- General Restrictions
- Definition
- Encoding
- Corresponding Devices

3 Learning

- Identification in the Limit
- Angluin's Algorithm
- Sakakibara's Algorithm
- 4 Learning of Quantifiers

э

Introduction Gene Quantifiers Defir Learning Enco Learning of Quantifiers Corro

General Restrictions Definition Encoding Corresponding Devices

- Finite models only.
- Quantifiers as classes of finite models.
- Restriction to monadic quantifiers sufficient for linguistics.

ъ

Quantifiers Lindström definition

Definition A monadic generalized quantifier of type $\underbrace{(1, \ldots, 1)}_{n}$ is a class Q of structures of the form $M = (U, A_1, \ldots, A_n)$, where A_i is a subset of U. Additionally, Q is closed under isomorphism.

3

General Restrictions Quantifiers Definition Learning Encoding Learning of Quantifiers

Corresponding Devices

- Existential Quantifier: $K_{\exists} = \{ (U, A) : A \subseteq U \land A \neq \emptyset \}.$

Э

イロト 不得 トイヨト イヨト

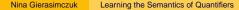
- Existential Quantifier:
 - $K_{\exists} = \{ (U, A) : A \subseteq U \land A \neq \emptyset \}.$
- Universal Quantifier:
 *K*_∀ = {(*U*, *A*) : *A* = *U*}.

Most:

 $K_{MOST} = \{(U, A) : |A - B| < |A \cap B|\}.$

Э

イロト 不得 トイヨト イヨト



• Existential Quantifier:

$$K_{\exists} = \{(U, A) : A \subseteq U \land A \neq \emptyset\}.$$

- Universal Quantifier:
 *K*_∀ = {(*U*, *A*) : *A* = *U*}.
- Most:

$$\mathcal{K}_{MOST} = \{(U, A) : |A - B| < |A \cap B|\}.$$

イロト イポト イヨト イヨト

= 900

General Restrictions Quantifiers Definition Learning Encoding Learning of Quantifiers

Corresponding Devices

Quantifiers Encoding

Aim

- Encode models as words with certain features.
- Class of models as sets of words (language).
- Use of the concept of constituents.

Э

ヘロト 人間 とくほ とくほ とう

Quantifiers Encoding

- List all elements of the model, e.g.: c_1, \ldots, c_5 .
- Label every element with one of the letters: $a_{\overline{A}\overline{B}}, a_{A\overline{B}}, a_{\overline{A}B}, a_{AB}$, according to constituents it belongs to.
- Get the word $\alpha_M = a_{\bar{A}\bar{B}}a_{A\bar{B}}a_{AB}a_{\bar{A}B}a_{\bar{A}B}a_{\bar{A}B}$.
- α_M describes the model in which: $c_1 \in \overline{AB}, c_2 \in A\overline{B}, c_3 \in AB, c_4 \in \overline{AB}, c_5 \in \overline{AB}.$
- The class K_Q is represented by set of words describing all models from the class.

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Quantifiers Encoding — Illustration

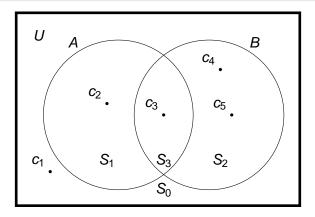


Figure: This model is uniquely described by $\alpha_M = a_{\bar{A}\bar{B}}a_{A\bar{B}}a_{A\bar{B}}a_{\bar{A}B}a_{\bar{A}B}a_{\bar{A}B}$.

ヘロト 人間 とくほとくほとう

Э

Dac

Definition

Let \mathcal{D} be a class of recognizing devices, and Ω be a class of monadic quantifiers. \mathcal{D} accepts Ω if and only if for every monadic quantifier Q:

 $(Q \in \Omega \iff \text{there is device } A \in \mathcal{D}(A \text{ accepts } L_Q)).$

ъ

Quantifiers Corresponding Devices - Results

Theorems

- Quantifier Q is first–order definable ↔ L_Q is accepted by some acyclic finite automaton. [van Benthem 1984]
- Monadic quantifier Q is definable in the divisibility logic FO + D_ω ⇐⇒ L_Q is accepted by some finite automaton. [M. Mostowski 1998]
- Quantifier of type (1) is semilinear (elementary definable in the structure (ω, +)) ⇐⇒ L_Q is accepted by push–down automaton. [van Benthem 1986]

There are *NL* quantifiers outside context–free languages.

・ロト ・雪 ト ・ ヨ ト

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

Outline

2 Quantifiers

- General Restrictions
- Definition
- Encoding
- Corresponding Devices

Learning

- Identification in the Limit
- Angluin's Algorithm
- Sakakibara's Algorithm
- Learning of Quantifiers

э

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

Procedure is infinite. In each step:

- learner is given a unit of data;
- learner has only a finite set of information;
- learner chooses a name of a language.

The language is identified in the limit if after some time guesses remain the same and correct.

Class of languages is identified in the limit, if there is a learner that identifies in the limit every language from this class.

3

・ロト ・ 四 ト ・ 回 ト ・

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

Learning Identification in the Limit — Data Presentation

Definition

TEXT for language *L* is an ω – sequence, *I*, of words $\alpha_1, \alpha_2, \ldots \in L$, such that every word $\alpha \in L$ occurs at least once in *I*. (also: positive information)

Definition

INFORMANT for language *L* is an ω – sequence, *I*, of elements of ($A^* \times \{0, 1\}$), such that for each $\alpha \in A^*$:

 $(\alpha, 1)$ is in I if $\alpha \in L$ $(\alpha, 0)$ is in I if $\alpha \notin L$.

(also: positive and negative information)

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

Learning Identification in the Limit — Main Results

Anomalous text	Recursively enumerable
	Recursive
Informant	Primitive recursive
	Context-sensitive
	Context-free
	Regular
Text	Finite cardinality languages

Table: Identifiability in the Limit Results.

3

イロト 不得 トイヨト イヨト

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

Learning of Quantifiers

Fact

The classes of FO, FO + D_{ω} and semilinear quantifiers are not identified in the limit using text but are identified using informant.

ъ

イロト イポト イヨト イヨト

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

Learning — again... Effective Algorithms — L* [Angluin]

- Finite and effective identification of regular language.
- Identifies language by finding a proper DFA.
- Use of queries.
- Controlled by the so-called *Minimally Adequate Teacher*.

Э

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

- Learner ask two types of questions:
 - **1** Membership: Is sequence α in the unknown language?
 - Extensional equivalence: Is DFA produced by L* equivalent to the DFA corresponding to unknown language. If not, the teacher gives a counterexample.
- *L** identifies every regular language.
- L* works in polynomial time.

・ロット 御マ キョット キョン

Identification in the Limit Angluin's Algorithm Sakakibara's Algorithm

- Developement of *L*^{*} wider classes of languages.
- Translation of L^* to context–free grammars.
- The same procedure as in L*.
- LA identifies every CFG.
- LA works in polynomial time.

Э

Outline

2 Quantifiers

- General Restrictions
- Definition
- Encoding
- Corresponding Devices

3 Learning

- Identification in the Limit
- Angluin's Algorithm
- Sakakibara's Algorithm

4 Learning of Quantifiers

э

Effective Learning of Quantifiers Results

Fact

Monadic FO + D_{ω} -definable quantifiers are learnable using L^* -algorithm.

Fact

Semilinear quantifiers of type (1) are learnable using LA–algorithm.

ъ

イロト イポト イヨト イヨト

Further Research

- Rethink adequacy of syntax learning models for the problem of semantics learning.
- Ordering semantic constructions by their learning complexity.
- Comparison of learning complexity and model-checking complexity.

Э

・ロト ・ 国 ト ・ 国 ト ・ 国 ト