
Identification through Inductive Verification
Application to Monotone Quantifiers

Nina Gierasimczuk?

Institute for Logic, Language, and Computation, University of Amsterdam
Institute of Philosophy, University of Warsaw

n.gierasimczuk@uva.nl

Abstract. In this paper we are concerned with some general properties
of scientific hypotheses. We investigate the relationship between the sit-
uation when the task is to verify a given hypothesis, and when a scientist
has to pick a correct hypothesis from an arbitrary class of alternatives.
Both these procedures are based on induction. We understand hypothe-
ses as generalized quantifiers of types 〈1〉 or 〈1, 1〉. Some of their formal
features, like monotonicity, appear to be of great relevance. We first fo-
cus on monotonicity, extendability and persistence of quantifiers. They
are investigated in context of epistemological verifiability of scientific hy-
potheses. In the second part we show that some of these properties imply
learnability. As a result two strong paradigms are joined: the paradigm of
computational epistemology (see e.g. [7, 6]), which goes back to the no-
tion of identification in the limit as formulated in [5], and the paradigm
of investigating natural language determiners in terms of generalized
quantifiers in finite models (see e.g.[1]).

Key words: identification in the limit, induction, monadic quantifiers,
monotonicity, semantics learning, verification

1 Introduction

The ‘identification in the limit’ model [5] has found numerous applications in
language learning analysis — for the most part in the acquisition of syntax. In
contrast the model has been underappreciated in the investigations concerning
learning of semantics.

On the other hand, in philosophy of science Gold’s paradigm has been used
to account for inductive reasoning and the process of approaching the correct
theory about the world. In this domain various semantic properties of hypotheses
are of great importance [7, 2].

In the present paper we abstract from the distinction between learning and
scientific inquiry. We hope that with this generality our results are relevant for
both subjects. Our aim is to analyze semantic properties of inductive verifiability
[7] and consider its connection with identification. The first section is devoted to

? The author is the receiver of a Foundation for Polish Science Award for Young
Researchers (START Programme 2008).

2 Nina Gierasimczuk

two kinds of verifiability. The introduction of those notions is illustrated with the
example of verifiability of monadic quantifiers in section 2. Next we present the
basics about identification in the limit. In the culminating chapter 3 we compare
the two notions. We conclude with theorems showing that with some restrictions
certain types of verification imply identification.

2 Verification

The idea of verification, except for its obvious connections with semantics, is also
very important in philosophy of science, where verifying and falsifying seem to
be fundamental procedures for establishing an adequate theory and making pre-
dictions about the actual world. The semantic procedure of verification consists
essentially in what follows:

Verification task Given model M and a sentence ϕ, answer the question
whether M |= ϕ.

Let us start with analyzing restrictions we should make on the verification
task to be able to proceed with our considerations.

First of all, for the sake of generality we consider the universe of M to be
infinite. This allows us to talk about infinite procedures being successful in the
limit. It is also very important to restrict our attention to computably enumer-
able structures. The reason is that we are interested in elements of the model
being presented one by one — such an inductive procedure essentially requires
that it is possible to enumerate them. In connection with this we also require
that a presentation of a given model does not include repetitions. This restric-
tion is made to simplify the procedure of counting elements without introducing
any additional markers. We also have to say something about ϕ — the sentence
involved in the verification task. We assume that ϕ has the form of a quantifier
sentence, which does not distinguish between isomorphic models. In other words,
we assume that hypotheses of our framework are purely about cardinalities or
relations between cardinalities, and not about the ‘nature’ of individual objects.

With the above-explained restrictions in mind, let us now move to define a
formal framework of inductive verifiability.

Definition 1. Let us consider a model M = (M, B), where M is an infinite,
computably enumerable set, and B ⊆ M is some computable unary predicate. Let
us assume that λ is an enumeration of the elements of M, without repetitions.

By ‘environment of M’, ε, we mean an infinite binary sequence such that: if
λn = x, then εn = χB(x), where χB is the characteristic function of B.

We will use the following notation:

• ε|n is the finite initial segment of ε through position n− 1 (i.e.: a sequence
ε0, ε1, . . . , εn−1);

• SEQ denotes a set of all finite initial segments of all environments;

Identification through Inductive Verification 3

• set(ε) is a set of elements that occur in ε;
• h will refer to a hypothesis (i.e.: a logical formula), H is a class of hypotheses;
• C is a correctness relation between hypotheses and streams of data. C(ε, h)

is satisfied iff h is correct with respect to ε, i.e., h is true in the model
represented by ε;

• α is an assessment method — total map from hypotheses and finite data
sequences to conjectures, α : H × SEQ → {0, 1, !}.
Conjectures are outputs of α; their meaning is the following:

1 — corresponds to the judgement that the hypothesis is true on the initial
“up to now” segment of data;

0 — means that the hypothesis is judged to be false on the initial “up to
now” segment of data;

! — appears as an announcement that there will be now mind change
about the statement following in the next step (we also refer to it as the
eureka sign).

2.1 Verification with Certainty

The first type of verification we want to discuss is verification with certainty. It
holds when the process of verification is finished after a finite number of steps.
We mean ‘finished’ in the sense that there is a point in the procedure at which
the assessment method, α, decides that the hypothesis, h, is true and that it can
stop computing right there, because h being false is no longer an option. In such
a case we can informally say that α is ‘sure’ or ‘certain’ about the answer. This
is where the name ‘verification with certainty’ comes from.

Formally, we will require that the step when certainty comes into the picture
is marked with the eureka symbol ‘!’ and the actual content of this certainty —
the hypothesis being true or false — is ‘1’ or ‘0’, respectively, answered in the
next step.

Let us first introduce the general notion of producing an answer with cer-
tainty.

Definition 2. We say that α produces b with certainty on (h, ε) iff there is an
n such that:

1. α(h, ε|n) =!, and
2. α(h, ε|n + 1) = b,
3. for each m < n, α(h, ε|m) 6=!.

This definition makes all values after n + 1 irrelevant.
Verification and falsification with certainty are defined as an adequate pro-

duction of 0 or 1 with certainty, respectively.

Definition 3. We say that α verifies h with certainty on ε (with respect to C)
iff α produces 1 with certainty on (h, ε) ⇔ C(ε, h). Definition of refutation with
certainty is analogous.

4 Nina Gierasimczuk

Definition 4. We say that h is verifiable with certainty (with respect to C) iff
there is an α, which for each ε verifies h on ε with certainty ⇔ h is true on ε.

Verification with certainty satisfies the condition of positive introspection of
knowledge, i.e., as soon as α answers ‘!’ on h, it ‘knows’ the logical value of
h. Such a situation does not occur in verification in the limit, which is defined
below.

2.2 Verification in the Limit

Verification in the limit is much weaker than verification with certainty. In order
to define it we exclude the eureka sign ‘!’ from the set of possible answers. We
restrict the power of the verification procedure α in such a way that it can give
only two answers:

1 — corresponds to the fact that the hypothesis is judged to be true on the
initial “up to now” segment of data;

0 — the hypothesis is judged to be false on the initial “up to now” segment of
data.

As in the previous case, this type of verification consists in giving partial
answers to finite initial segments of the environment. This time however the
procedure is endless. We are dealing here with an infinite sequence of answers.
We say that a procedure verifies a hypothesis in the limit if and only if there is
a step in the procedure where the answer is 1 and it stays that way for the rest
of the computation.

Definition 5. We say that α verifies a hypothesis, h, in the limit iff:

∃n∀m > n α(h, ε|m) = 1.

Definition 6. We say that h is verifiable in the limit iff there is an α, which
for each ε verifies h in the limit on ε iff h is true on ε.

In the general case of verification in the limit the fact of verification is not
‘visible’ to α. Whether a hypothesis has been verified can be judged only from
a global perspective. Limiting verification corresponds to the scientific strategy
of claiming adequacy of some ‘up to now’ correct hypothesis as long as possible.
There is no guarantee however that in the light of future data it will not be
rejected. When dealing with verifiability in the limit a scientist has to remain
alert all the time.

3 Application: Verification of Monotone Quantifiers

The restriction made in the previous section, that hypotheses of our framework
are purely about cardinalities or relations between cardinalities, and not about
the ‘nature’ of individual objects leads us to treat hypotheses as generalized

Identification through Inductive Verification 5

quantifiers. Informally speaking a given hypothesis can be identified with the
class of models in which it is true. The same works for quantifiers. Even if intu-
itively quantifiers are formal counterparts of (natural language) determiners, we
have a theory of generalized quantifiers which instructs us to reduce a quantifier
simply to the class of models in which this quantifier is true. So, running the
risk of being charged with philosophical insensitivity, we will use the notions of
quantifiers and hypotheses interchangeably.

In order to talk about the properties we are interested in we have to provide
the relational definition of generalized quantifier.

Definition 7. A generalized quantifier Q of type t = (n1, . . . , nk) is a functor
assigning to every set M a k-ary relation QM between relations on M such that
if (R1, . . . , Rk) ∈ QM then Ri is an ni-ary relation on M , for i = 1, . . . , k.

It is quite prevalent in the philosophical literature to link notions of verifi-
ability (with certainty) and falsifiability (with certainty) to the existential and
universal quantifier, respectively. In fact, as we are going to see, this intuitive
correspondence includes a broader class with quantifiers of some special mono-
tonicity properties. We will discuss this connection below.

3.1 Quantifiers of Type 〈1〉

Let us now focus on properties of generalized quantifiers of type 〈1〉. First we
define what it means for a quantifier to be monotone increasing and extendable.

Definition 8.
(MON↑) We say that a quantifier QM of type 〈1〉 is monotone increasing iff

the following holds: if A ⊆ A′ ⊆ M, then QM(A) implies QM(A′).
(EXT) A quantifier Q of type 〈1〉 satisfies EXT iff for all models M and M′,

with the universes M and M′, respectively: A ⊆ M ⊆ M′ implies QM(A) =⇒
QM′(A).

In other words, monotonicity guarantees that extending the predicate does
not change the logical value of the quantifier from true to false. On the other
hand extension ensures that adding new elements to the complement of A does
not make a true quantifier false.

Comparison of the notions of verifiability with certainty and monotonicity
allows us to state the following proposition:

Proposition 1. Let Q be a MON↑ and EXT quantifier of type 〈1〉. There exists
a model M = (M, A) with finite A ⊆ M such that QM(A) iff Q is verifiable with
certainty on computably enumerable models.

Proof. (⇒) Let us first assume that Q of type 〈1〉 is MON↑ and EXT, and that
there exists a model M = (M, A) with finite A ⊆ M such that QM(A). We use
the characteristic function of A, χA, to get an infinite sequence, εA, of 0’s and
1’s representing M. εA is an environment of M. We run the α procedure on εA

6 Nina Gierasimczuk

and Q(A). Step by step, while being fed, α constructs a model M′ = (M′, A′).
This happens in the following way.

First we take n := 0, M′ := ∅, A′ := ∅.
α reads εn: if εn = 1, then |A′| := |A′| + 1; else |Ā′| := |Ā′| + 1. α checks if

QM′(A′): if it holds, α answers ‘!’ and 1 to the rest of εA; otherwise it answers 0
and moves to n := n + 1.

The procedure α verifies QM(A) with certainty. This is because Q(A) is true
in M, and from the assumption, there is a finite cardinality of A′ which satisfies
Q(A′). From MON↑ and EXT, we know that as soon as α reaches this cardinality
there is no possibility that Q(A) changes its logical value at an extension A′, Ā′

in M′.
(⇐) Let us assume that M |= Q(A), and that there is a procedure α which

verifies with certainty on εA. Therefore, there is a point, n, at which α answers
! and then 1. Then we know that Q(A′), where |A′| is equal to the number of 1s
in εA|n and |Ā′| is equal to the number of 0s in εA|n. What remains of ε is not
relevant for the logical value of Q(A′). This means that if A′ ⊆ A′′ then QM′(A′′)
and if M′ ⊆ M′′ then QM′′(A′). This is the same as saying that Q is MON↑ and
EXT.

Having this in mind we can also consider which type 〈1〉 quantifiers corre-
spond to the notion of falsifiability with certainty. The answer is as follows:

Proposition 2. Let Q be a quantifier of type 〈1〉. Q is verifiable with certainty
iff ¬Q is falsifiable with certainty.

Proof. (⇒) First assume that Q is verifiable with certainty. That is: there is a
procedure α such that for every model M if M |= Q(A), then α verifies Q(A)
with certainty. We now construct a procedure α′ such that it falsifies ¬Q with
certainty.

α′(εA|n) =

1 if α(εA|n) = 0,

0 if α(εA|n) = 1,

! if α(εA|n) = !.

Since ¬Q is a complement of Q, this procedure falsifies ¬Q on A iff ¬Q is
false in M. (⇐) The other direction works the same way.

3.2 Quantifiers of Type 〈1, 1〉

In the linguistic context it is common to investigate quantifiers of type 〈1, 1〉. It is
often assumed (see e.g. [10]) that all natural language determiners correspond to
so-called CE-quantifiers. CE-quantifiers satisfy three requirements: isomorphism
closure (ISOM), extension and conservativity (CONS). (EXT) for quantifiers of
type 〈1, 1〉 is a natural extension of the definition for type 〈1〉. Below we define
(CONS).

Definition 9. We call a quantifier Q of type 〈1, 1〉 conservative iff:

Identification through Inductive Verification 7

(CONS) ∀A,B ⊆ M: QM(A,B) ⇐⇒ QM(A,A ∩B).

CE-quantifiers then have the property that their logical value depends only
on the cardinality of the two constituents, A−B and A ∩B, in the model. The
part of B falling outside of the scope of A does not influence the logical value of
a CE-quantifier. For the rest of the present section we will restrict ourselves to
CE-quantifiers.

We will also need a notion of left-side monotonicity, which is usually called
‘persistence’.

Definition 10. We call a quantifier Q of type 〈1, 1〉 persistent iff:

(PER) If A ⊆ A′ ⊆ M and B ⊆ M, then QM(A,B) ⇒ QM(A′, B).

Persistence guarantees that adding new elements to both important constituents
A − B and A ∩ B does not change the logical value of the quantifier from true
to false.

We claim the following:

Proposition 3. Let Q be a PER CE-quantifier of type 〈1, 1〉. There exists a
model M = (M, A, B) such that A ∩B is finite and QM(A,B) iff it is verifiable
with certainty.

Proof. The proof is analogous to the proof of Proposition 1. We simply focus on
two constituents of the model: A − B and A ∩ B, and treat them as Ā and A
(respectively) in the proof of Proposition 1.

Proposition 4. Let Q be a CE-quantifier of type 〈1, 1〉. ¬Q is falsifiable with
certainty iff Q is verifiable with certainty.

Proof. Analogous to the the proof of Proposition 2.

4 Identifiability through Verification

Historically speaking, philosophical analysis of the scientific discovery process
led to skepticism. It has been claimed that its creative content cannot be ac-
counted for by any scientific means, in particular by no mathematical or algo-
rithmic model [3]. The natural situation of discovery is indeed so complex and
non-uniform that it seems impossible to capture it in an adequate formalism.
However, some approximations, which to a certain extent idealize the process, are
not only makable, but also already existing and are ready to use. The framework
of identification in the limit proposed in [5] started a long line of mathematical
investigation of the process of language learning. At first sight scientific discov-
ery and learning might seem distant from each other. In the present paper we
assume the adequacy of the identification model for scientific inquiry analysis
(for similar approaches see [7, 8]).

Intuitively, the verification procedure (discussed in the previous section) is a
part of scientific discovery. The latter can be seen as a compilation of assuming

8 Nina Gierasimczuk

hypotheses, checking their logical value on data, and changing them to another
hypothesis, if needed. In the present section we will introduce the identifica-
tion formalism and present some ideas and facts about its correspondence to
verification.

4.1 Identification

The identification in the limit approach [5] gives a mathematical reconstruction
of the process of inductive inference. The task consists in guessing a correct
hypothesis on the basis of an inductively given, infinite sequence of data about
the world.

The framework includes: a class of hypotheses H, an infinite sequence of data
about the world ε, a learning function f (a scientist).

We will explain the general idea of identification in the limit in terms of a
simple game between a Scientist and Nature. First, some class of hypotheses, H,
is chosen. It is known by both players. Then Nature chooses a single hypothesis,
h, from H, to correctly describe the actual world. After that Nature starts giving
out atomic information about the world. She does this in an inductive way.
Each time the Scientist gets a piece of information, he guesses a hypothesis from
the previously defined class on the basis of the sequence of data given so far.
Identification in the limit is successful, if the guesses of the Scientist after some
finite time stabilize on the correct answer.

Let us now specify the elements of the framework. By hypotheses we again
mean quantified formulae, with a logical (closed under isomorphism) quanti-
fier of type 〈1〉 or CE-quantifier of type 〈1, 1〉 (see e.g. [10]). The reason for
this is the same as in the case of verification — that we want order- and
intension-independent hypotheses, and a clear and relevant binary representa-
tion of models. The above-mentioned encoding of models serves as a basis for
environments. The learning function, also referred to as the ‘scientist’, is defined
as f : SEQ → H.

Definition 11 (Identification in the limit).
We say that a learning function, f :

1. identifies h ∈ H on ε for M |= h in the limit iff for cofinitely many n,
f(ε|n) = h;

2. identifies h ∈ H in the limit iff it identifies h in the limit on every ε for
every M, such that M |= h;

3. identifies H in the limit iff it identifies in the limit every h ∈ H.

We can analogously define the much stronger notion of identifiability with
certainty. The difference is that in this case the learning function ‘knows’ when
it has identified the correct hypothesis.

Definition 12 (Identification with certainty).
We say that a learning function, f :

Identification through Inductive Verification 9

1. identifies h ∈ H with certainty on ε for M |= h iff for some n, f(ε|n) =!
and f(ε|n + 1) = h;

2. identifies h ∈ H with certainty iff it identifies h with certainty on every ε
for every M |= h;

3. identifies H with certainty iff it identifies with certainty every h ∈ H.

4.2 Comparing verification and identification

In the present section we will state two theorems. They show a connection be-
tween identifiability and verifiability.

Certainty setting Let us take a class of hypotheses, H, and the sequence, ε,
of data about the actual world. Assume that H contains only mutually disjoint
hypotheses verifiable with certainty, i.e., for every h ∈ H there is a procedure α,
which verifies h with certainty iff it is true in the actual world.

Theorem 1. Every such computably enumerable class H is identifiable with
certainty.

Proof. Assume that H is a computably enumerable class of mutually disjoint
hypotheses verifiable with certainty. We define a procedure Id-Cert which iden-
tifies with certainty every hypothesis from the class H. An example of a run of
the procedure is presented in Figure 1.

[h1, α1][h2, α2]

0

0

1

0 1

!

0

0

0 0

0

[h3, α3][h4, α4][h5, α5][h6, α6]

1

0

1

0 0

0

0

1

1

ε1

ε2

ε3

ε4

ε5

Fig. 1. Identifiability with certainty

Since H is computably enumerable we can assume existence of a sequence
(h)n which enumerates H. Each hn is associated with its verification with cer-
tainty procedure αn. Id-Cert works in the following way: it first checks α1(h1, ε1)
(the value of the first hypothesis on the first piece of data), then it proceeds
according to the diagonal enumeration of αn(hn, εm) until it meets ‘!’. Then it

10 Nina Gierasimczuk

performs a check for αn(hn, εm+1). If αn(hn, εm+1) = 1, then Id-Cert stops and
answers hn. Otherwise it moves back to αn(hn, εm) and continues to perform
the diagonal procedure.

By assumption every h ∈ H is verifiable with certainty. Therefore if hn,
for some n, is true on ε, then αn will eventually produce ‘!’. And since Id-
Cert performs a diagonal search it does not miss any answer. Hence, Id-Cert
identifies every h ∈ H with certainty, so H is identifiable with certainty.

Let us again take a class of hypotheses, H, and the sequence, ε, of data
about the actual world. Assume that H contains only hypotheses verifiable with
certainty, but this time let us drop the assumption of H being a class of mutually
disjoint hypotheses. Then we can prove what follows.

Theorem 2. Every such computably enumerable class H is identifiable in the
limit.

Proof. The proof is very similar to the proof of the previous theorem. We use
the same diagonal method. This time however identification does not stop on the
first ‘!’ it encounters. Let us assume that ‘!’ happens for εn. Instead, it answers
the relevant h: the hypothesis which was first recognized to be verified with
certainty; then it goes on with the diagonal search looking for a hypothesis, h′,
which reveals ‘!’ for some εm, where m < n. If it meets such an h′ it keeps
answering it as long as no other ‘better fitting’ hypothesis is found. An example
of a run of the procedure is presented in Figure 2.

[h1, α1][h2, α2]

0

0

1

0 1

!

0

0

0 0

0

[h3, α3][h4, α4][h5, α5][h6, α6]

1

0

!

0 1

0

1

1

1

ε1

ε2

ε3

ε4

ε5

Fig. 2. Identifiability with certainty

By assumption every h ∈ H is verifiable with certainty. Therefore if hn,
for some n, is true on ε, then αn will eventually produce ‘!’. And since this
identification performs a diagonal search it does not miss any answer. Hence
every h ∈ H is identified in the limit, so H is identifiable in the limit.

Identification through Inductive Verification 11

Limiting setting Let us again take a computably enumerable class of mutually
disjoint hypotheses, H, and a sequence, ε, of data about the actual world. But
this time let us agree that H consists of hypotheses that are verifiable in the
limit, i.e., for every h ∈ H there is a procedure α which verifies h in the limit iff
h it is true.

Theorem 3. Every such computably enumerable class H is identifiable in the
limit.

Proof. Assume that H is a computably enumerable class of mutually disjoint
hypotheses that are verifiable in the limit. This means that for every hn ∈ H
there is a procedure αn which verifies h in the limit if and only if h is true. We
are now going to define a procedure Id-Lim which identifies every hypothesis
from the class H. An example of a run of the Id-Lim is presented in Figure 3.

[h1,α1][h2,α2][h3,α3][h4,α4]

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

1

1

1

1

...

1

0

0

1

1

0

1

1

ε1

ε2

ε3

ε4

ε5

ε6

Fig. 3. Id-Lim identifiability

Since H is computably enumerable we can assume the existence of the se-
quence (h)n enumerating the hypotheses from H. Each of them is associated
with its verification in the limit procedure αn.

The algorithm Id-Lim first performs a single check for {h1}:
If α1(h1, ε|1) = 1, then Id-Lim outputs h1 and moves to α1(h1, ε|2). The

answer is repeated until there is an n such that α1(h1, ε|n) = 0. In this case
it starts the test for {h1, h2}, i.e., starting from ε|n + 1 it looks for another 0
in the column (h1, α1) answering h1 as long as α1 answers 1. When 0 is visited
Id-Lim moves to α2(h2, ε1) and performs a single check for h2. In such manner

12 Nina Gierasimczuk

we try to check {h1}, {h1, h2}, {h1, h2, h3}, . . . In the picture each of those tests
is marked with different shade of grey.

Procedure Id-Lim never stops. It is successful if after some point its guesses
are still the same and correct with respect to ε.

Why does Id-Lim work? One can easily observe that Id-Lim runs through
every finite sequence of 1s. Visiting a point in which αn(hn, εm) = 1, it answers
hn. If there is a true hypothesis in H, Id-Lim will eventually enter an infinite
sequence of 1s (in column (hm, αm), say), since H consists of hypotheses verifi-
able in the limit. Once it enters this sequence there is no way out — Id-Lim will
indefinitely answer hm. Therefore Id-Lim identifies every h ∈ H in the limit,
and hence H is identifiable in the limit.

In case Id-Lim identifies some hn the procedure needs to remember a finite
but not predetermined number of points in ε. We would like to have an algorithm
which does not run back and forth on the environment. The answer to this is
procedure which is introduced below. Let us call it Id-Lim∗. For this procedure
it is enough to remember only one point, namely the position in which the
procedure finds itself at each moment.

Id-Lim∗ uses essentially the same idea of column-ruled searching for strings
of 1s. It also consecutively performs it for {h1}, {h1, h2}, {h1, h2, h3}, . . . The
difference is that when it eventually leaves one column, starting a test for a new
hypothesis, it does not go back to ε1. Instead, it simply moves to the value in
the next column but in the same row.

[h1,α1][h2,α2][h3,α3][h4,α4]

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

1

1

1

1

...

1

0

0

1

1

0

1

1

ε1

ε2

ε3

ε4

ε5

ε6

Fig. 4. Id-Lim∗ identifiability

Identification through Inductive Verification 13

The difference between Id-Lim and Id-Lim∗ is mainly in the use of ε. With
Id-Lim∗ it is enough to run through ε once without going back. In case of Id-
Lim every time we fail on some hypothesis and enter a new one, previously not
visited, it has to start reading ε from the beginning. Id-Lim∗ also identifies H.
It simply leaves out the truth values of hypotheses on some already visited initial
segment of ε.

5 Conclusion

The approach presented in this paper can be seen as an attempt to find some
general semantic correlates of identification. Inductive verification can be treated
as a condition for and a part of the identification process. This fact contributes
to the general problem of semantics learning and to modeling the process of
scientific inquiry.

Some attempts to approach the problem of learning of semantic constructions
are already present in the literature [9, 4]. What is the connection with this
framework? The present approach has much to do with the more general idea
of model-theoretic learning [2, 8], but it is also related to the work of H.-J.
Tiede [9]. In his, slightly different, framework he shows that the class of first-
order definable persistent quantifiers of type 〈1, 1〉 is identifiable in the limit.
This result is consistent with our considerations. In fact, for the same class
of quantifiers we show that it is verifiable with certainty, and that each class
containing solely verifiable with certainty structures is identifiable in the limit.

Intuitively there are at least two main parts of human semantic competence.
One of them is responsible for producing grammatically correct (syntax domain)
or true (semantics domain) hypotheses. The second is a natural correlate of
model-checking, i.e., the competence of deciding whether a sentence is true or
false in the actual world. The results presented in this paper show how the latter
can be embedded in the identification (learning or discovering) process. In this
light verification can be seen as a pillar of learning abilities.

References

1. van Benthem, J.: Essays in Logical Semantics. D. Reidel, Dordrecht (1986)
2. Osherson, D., de Jongh, D., Martin, E., Weinstein, S.: Formal Learning Theory. In:

van Benthem, J., Ter Meulen, A.: Handbook of Logic and Language. MIT Press,
Cambridge (1997)

3. Feyerabend, P.: Against Method. Verso Press, London (1975)
4. Gierasimczuk, N.: The Problem of Learning the Semantics of Quantifiers. In: ten

Cate, B.D., Zeevat, H.W. (eds.) Logic, Language, and Computation, TbiLLC 2005.
LNAI, vol. 4363, 117–126. Springer (2007)

5. Gold, E.M.: Language Identification in the Limit. Information and Control. 10,
447–474, (1967)

6. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn. MIT Press,
Chicago (1999)

7. Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)

14 Nina Gierasimczuk

8. Martin, E., Osherson, D.: Elements of Scientific Inquiry. Cambridge (1998)
9. Tiede, H.-J.: Identifiability in the Limit of Context-Free Generalized Quantifiers.

Journal of Language and Computation. 1, 93–102, (1999)
10. Väänänen, J.: On the Expressive Power of Monotone Natural Language Quantifiers

over Finite Models. Journal of Philosophical Logic. 31, 327–358, (2002)

