Conservativity

Nina Gierasimczuk Dick de Jongh

March 5th, 2013

Recall the definition of conservativity.

Definition 1 A learning function M is conservative if, for each σ and x, $content(\sigma^{\wedge}\langle x \rangle) \subseteq L_{M(\sigma)}$ implies $M(\sigma^{\wedge}\langle x \rangle) = M(\sigma)$.

Theorem 1 There exists a collection of languages that is effectively identifiable, but not by a effective conservative learner.

Proof Let us first focus on constructing the witness class. Initially, take $\mathcal{L} = \{L_i = \{\langle i, x \rangle \mid x \in \mathbb{N}\} \mid i \in \mathbb{N}\}$. Consider a particular $j \in \mathbb{N}$, the corresponding $L_j \in \mathcal{L}$, and the corresponding φ_j , a partial recursive function. We can think of φ_j as of a (not necessarily successful) learner. Let us consider a particular text for L_j , $t^j = \langle j, 0 \rangle, \langle j, 1 \rangle, \langle j, 2 \rangle, \langle j, 3 \rangle, \ldots$ If φ_j happens to be a function that identifies L_j , then on some initial segment $t^j[n+1], \varphi_j$ will output an index of L_j , say *i* (obviously, if φ_j does not identify L_j , this does not have to happen). Moreover, note that enumerating the set W_i will at some point give a superset of $\{\langle j, 0 \rangle, \ldots, \langle j, n \rangle\}$ (here we are using the fact that the successful learner must be a total function).

Using this interpretation we will now extend the class \mathcal{L} in the following way. For each $j \in \mathbb{N}$ we add a language L'_j defined in the following way:

$$L'_{j} = \begin{cases} \{\langle j, 0 \rangle, \dots, \langle j, n \rangle\} & \text{where } \langle n, s \rangle \text{ are the smallest s.t.} \\ & \{\langle j, 0 \rangle, \dots, \langle j, n \rangle\} \subset W_{\varphi_{j}^{s}(t^{j}[n+1]),s}; \\ \{\langle j, 0 \rangle\} & \text{if such a pair does not exist.} \end{cases}$$

Assume that an effective, conservative learner M identifies \mathcal{L} . We will derive a contradiction.

Such a learner is a recursive function, so M is in fact φ_j for some $j \in \mathbb{N}$. Since φ_j identifies \mathcal{L} , it identifies $L_j \in \mathcal{L}$. Then, on text $t^j = \langle j, 0 \rangle, \langle j, 1 \rangle, \langle j, 2 \rangle, \langle j, 3 \rangle, \ldots$ there will be a (smallest) pair $\langle n, s \rangle$, that will guarantee the existence of $L'_j = \{\langle j, 0 \rangle, \ldots, \langle j, n \rangle\}$ in \mathcal{L} . Now consider the text $\langle j, 0 \rangle, \ldots, \langle j, n \rangle, \langle j, n \rangle, \langle j, n \rangle, \ldots$ for L'_j . On the first occurrence of $\langle j, n \rangle, \varphi_j$ will output *i* for L_j , and since the rest of the text does not contradict L_j, φ_j will never change the output (because it is conservative). Hence, φ_j will not identify L'_j . Contradiction.

It remains to be shown that \mathcal{L} is identifiable by a recursive learner M. Consider two cases, depending on the first element seen by M:

- 1. $\langle j, m \rangle$, with $m \neq 0$, then M will output an index of L_j on any sequence σ extending $\langle j, m \rangle$, unless it is the case that $\{\langle j, 0 \rangle, \ldots, \langle j, n \rangle\} \subset W_{\varphi_j^s(t^j[n+1]),s}$ for some $\langle n, s \rangle \leq lh(\sigma)$. If it is so, it can be determined if all elements of σ are members of L'_j (since both σ and L'_j are finite). If that is the case M outputs L'_j and continues doing so as long as all the elements of the input sequence are elements of L'_j . If that is not the case M switches back to L_j .
- 2. $\langle j, 0 \rangle$, then *M* conjectures L'_j as long as $\langle j, 0 \rangle$ is the only pair seen, otherwise *M* switches to L_j and continues according to the behavior described before.

Theorem 2 (Lange, Zeugmann, and Kapur) There is a uniformly recursive family of languages \mathcal{L} , which is effectively identifiable with respect to some indexing for \mathcal{L} , but which is not effectively identifiable by a conservative learner with respect to any indexing.

Proof The idea here is essentially the same as that of the proof of Theorem 1. The extra complexity is due to the need to produce a uniformly recursive family of languages. Let us construct such a family \mathcal{L} .

Let t^i be the text $\langle i, 0 \rangle, \langle i, 1 \rangle, \dots$ \mathcal{L} contains all languages $L_{\langle i, s \rangle}$ defined as follows:

$$L_{\langle i,0\rangle} = \{\langle i,x\rangle \mid x \in \mathbb{N}\}\$$

and for $s \ge 1$,

$$L_{\langle i,s\rangle} = \begin{cases} \{\langle i,0\rangle,\ldots,\langle i,n\rangle\} & \text{ if } n \text{ is the smallest s.t.} \\ & \varphi_i^s(t^i[n+1])\downarrow \\ & \text{ and } \{\langle i,0\rangle,\ldots,\langle i,n\rangle\} \subset W_{\varphi_i^s(t^i[n+1]),s}; \\ \{\langle i,x\rangle \mid x \in \mathbb{N}\} & \text{ if no such } n \text{ exists.} \end{cases}$$

First let us show that $L_{\langle i,s \rangle}$'s form a uniformly recursive family of languages. For $s \geq 1$, $\langle i,m \rangle \in L_{\langle i,s \rangle}$ iff for all n < m such that $\varphi_i^s(t^i[n+1]) \downarrow$, $\{\langle i,0 \rangle, \ldots, \langle i,n \rangle\} \not\subset W_{\varphi_i^s(t^i[n+1]),s}$ is a decidable condition. So there is a uniformly recursive indexing of \mathcal{L} .

 \mathcal{L} is identified by a recursive function. To prove this, we show that a telltale set for $L_{\langle i,s \rangle}$ in L can be recursively enumerated, given $\langle i,s \rangle$. Let

$$\psi(i,0) \simeq \begin{cases} \langle n,s \rangle & \text{if } \langle n,s \rangle \text{ is the smallest pair s.t.} \\ & \varphi_i^s(t^i[n+1]) \downarrow \\ & \text{and } \{\langle i,0 \rangle, \dots, \langle i,n \rangle\} \subset W_{\varphi_i^s(t^i[n+1]),s}; \\ \uparrow & \text{otherwise.} \end{cases}$$

$$\psi(i, x+1) \simeq \begin{cases} \langle n, s \rangle & \text{if } \langle n, s \rangle \text{ is the smallest pair s.t.} \\ & 1 \leq s < j_1(\psi(i, x)), \varphi_i^s(t^i[n+1]) \downarrow \\ & \text{and } \{ \langle i, 0 \rangle, \dots, \langle i, n \rangle \} \subset W_{\varphi_i^s(t^i[n+1]),s}; \\ \uparrow & \text{otherwise.} \end{cases}$$

The set $\{x \mid \psi(i, x) \downarrow\}$ is some initial segment of \mathbb{N} , and $j_0(\psi(i, x))$ is strictly increasing in x as long as it is defined (given that we are using the Cantor function j for $\langle n, s \rangle$). Let

$$D_i = \{ \langle i, n \rangle \mid n = 0 \lor n \le j_0(\psi(i, x)) + 1 \text{ for some } x \text{ s.t. } \psi(i, x) \downarrow \}.$$

Then for all $s, L_{\langle i,s \rangle} \subset D_i$ if $L_{\langle i,s \rangle}$ is finite and $D_i \subset L_{\langle i,s \rangle}$ otherwise. This implies that $D_i \cap L_{\langle i,s \rangle}$ is a telltale set for $L_{\langle i,s \rangle}$ in \mathcal{L}_e . Since D_i is recursively enumerated, so is $D_i \cap L_{\langle i,s \rangle}$.

That \mathcal{L} cannot be identified by a recursive function conservative on \mathcal{L} (with respect to any index) can be proved in a way similar to the proof of Theorem 1.

Theorem 3 Let \mathcal{L} be a uniformly recursive family of languages. There is a total recursive function G that maps each $i \in \mathbb{N}$ to a telltale set G(i) for L_i in \mathcal{L} iff \mathcal{L} is identifiable by a recursive function conservative on \mathcal{L} .

Proof

 $[\Rightarrow]$

Define M as follows:

$$M(\sigma) \simeq \begin{cases} \mu i \le lh(\sigma)(G(i) \subseteq content(\sigma) \subseteq L_i) & \text{if defined;} \\ \uparrow & \text{otherwise.} \end{cases}$$

Then M is conservative on \mathcal{L} , and identifies \mathcal{L} . $[\Leftarrow]$

We leave the proof of this direction for later.