The Characterization of Finite Identifiability

Nina Gierasimczuk Dick de Jongh

March 12th, 2013

Theorem 1 A class \mathcal{L} is finitely identifiable from positive data if and only if a definite finite tell-tale of Li is uniformly computable for any index i, that is, there exists an effective procedure that on input i produces all elements of a definite finite tell-tale of L_i and then halts.

Proof

 $[\Rightarrow]$

Suppose the class \mathcal{L} is finitely identifiable from positive data. Then there exists a learner M that finitely identifies \mathcal{L} . Take L_i and a text t for L_i . A definite finite tell-tale of L_i is uniformly computable in the following way.

D(i) = content(t[n]) s.t. M(t[n]) = j and $L_j = L_i$.

Since M finitely identifies the class \mathcal{L} , D(i) always exists and is computable. Now, we show by contradiction that the output of this procedure, say D, is a definite finite tell-tale of L_i . Suppose D is not a definite finite tell-tale of L_i . Clearly, D is a finite subset of L_i . Therefore, there exists an index j such that $L_i \neq L_j$ and $D \subseteq L_j$. Since M infers L_i from t such that there is an n with content(t[n]) = D, it follows that M can not infer L_j from a positive presentation t^j of L_j such that $t^j[n] = t[n]$. This contradicts the assumption.

[⇐]

Suppose a definite finite tell-tale of L_i is uniformly computable for any index i, and we denote by D(i) the result of computation. The class \mathcal{L} is finitely identifiable by the following learner M. M constructs set T, that is initially empty. At each step n M adds the newly observed data into T and checks if $D(j) \subseteq T$ for $0 \leq j \leq n$. Once such is found M outputs j and stops.

The problem: $D(j) \subseteq T$? is decidable since D(j) and T are explicitly given finite sets.

- 1. The output is a correct guess by the definition of definite tell-tale set.
- 2. The learner gives an answer after a finite time.