Formal Learning Theory Homework 2 (due on Friday, February 22nd at 1pm)

February 15th, 2013

Ex. 1 Take *E* to be the set of all even natural numbers. Let $\mathcal{L} = \{E \cup D_n \mid D_n \subseteq \mathbb{N}, D_n \text{ is finite}\}$. Show that \mathcal{L} is identifiable.

Ex. 2

(a) Given the class of all co-singletons \mathcal{L} , and learner M discussed in class 1 and 2, that identifies the class, provide:

- 1. locking sequence for M and $\mathbb{N} \{i\}$, and
- 2. tell-tale subset for $\mathbb{N} \{i\}$.

(b) Modify M, to obtain M', such that M' answers $\mathbb{N} - \{9\}$ as long as 9 hasn't appeared, and otherwise proceeds as M, provide:

- 1. locking sequence for M and $\mathbb{N} \{i\}$, and
- 2. tell-tale subset for $\mathbb{N} \{i\}$.

Ex. 3 [*] Show that the class of all co-singletons \mathcal{L} cannot be identified incrementally. Hint: Consider a locking sequence for $\mathbb{N} - \{0\}$. A further hint is available on request.

Ex. 4 Give a full proof of the following theorem discussed in class: Any \mathcal{L} is identifiable on informant, i.e. text thats give complete negative as well as positive information.