Formal Learning Theory

Homework 4 (due on Friday, March 8th at 1pm)

r in the second s

March 1st, 2013

Ex. 1 For any $k \in \mathbb{N}^+$, we use \mathcal{L}^k to denote the class of all unions of up to k languages from \mathcal{L} , i.e., $\mathcal{L}^k = \{L_{j_1} \cup \ldots \cup L_{j_k} \mid L_{j_1}, \ldots, L_{j_k} \in \mathcal{L}\}$. Let \mathcal{L} be a uniformly recursive family and $k \in \mathbb{N}^+$. Show that if \mathcal{L} is of finite elasticity, then \mathcal{L}^k is of finite elasticity.

Ex. 2 Give an example of an effectively identifiable family \mathcal{L} such that \mathcal{L} does not have characteristic sets.

Ex. 3 Give an example of a uniformly recursively enumerable family that has characteristic sets but is not effectively identifiable.

Ex. 4 Let $\mathcal{L} = \{L_i \mid i \in \mathbb{N}\}$ be uniformly recursive family that has a family of characteristic sets $(S_i)_{i \in \mathbb{N}}$. Show that there exists a family of characteristic sets $(T_i)_{i \in \mathbb{N}}$ for \mathcal{L} and a recursive function F(n, i) such that $T_i = \bigcup_{i \in \mathbb{N}} T_i^n$, where $T_i^n = F(n, i)$.

Ex. 5 Let \mathcal{L} contain the following languages:

1.
$$L_i = \{i, i^2, i^3, \dots, i^i\}, \text{ for } i \in \mathbb{N}^+;$$

2.
$$L_0 = \mathbb{N}$$
.

Show that \mathcal{L} is effectively identifiable (use a proof strategy different than showing a witness learner).