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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 30, Number 1, March 1965 

TRIAL AND ERROR PREDICATES AND THE SOLUTION TO A 
PROBLEM OF MOSTOWSKI* 

HILARY PUTNAM 

? 1. Introduction. The purpose of this paper is to present two groups 
of results which have turned out to have a surprisingly close interconnection. 
The first two results (Theorems 1 and 2) were inspired by the following 
question: we know what sets are "decidable" - namely, the recursive sets 
(according to Church's Thesis). But what happens if we modify the notion 
of a decision procedure by (1) allowing the procedure to "change its mind" 
any finite number of times (in terms of Turing Machines: we visualize the 
machine as being given an integer (or an n-tuple of integers) as input. 
The machine then "prints out" a finite sequence of "yesses" and "nos". 
The last "yes" or "no" is always to be the correct answer.); and (2) we give 
up the requirement that it be possible to tell (effectively) if the compu- 
tation has terminated? I.e., if the machine has most recently printed "yes", 
then we know that the integer put in as input must be in the set unless the 
machine is going to change its mind; but we have no procedure for telling 
whether the machine will change its mind or not. 

The sets for which there exist decision procedures in this widened sense 
are decidable by "empirical" means - for, if we always "posit" that the 
most recently generated answer is correct, we will make a finite number of 
mistakes, but we will eventually get the correct answer. (Note, however, 
that even if we have gotten to the correct answer (the end of the finite 
sequence) we are never sure that we have the correct answer.) 

Instead of requiring that the sequence of "yesses" and "nos" be finite 
and non-empty, we may require that it should always be infinite, but that 
it should consist entirely of "yesses" (or entirely of "nos") from a certain 
point on: the class of predicates obtained (which we call the class of "trial 
and error" predicates), is easily seen to be unchanged.1 We thus arrive at 
the following reformulation of our first question: first define 

DEFINITION. P is a trial and error predicate if and only if there is a g.r. 
(general recursive) function / such that (for every x1, x2, ..., xn) 

P(x1, x2, . ..,xn) lim /(xl, x2, . * *,Xn,y) 1, 
y-,00 

P(x1, X2, ..., Xn) lim /(x1, x2, .X. . , Ay)= 0, 
_Y--00 

Received November 25, 1963. 
* This work was supported in part by the U.S. Army, the Air Force Office of 

Scientific Research, and the Office of Naval Research. 
1 For going from a finite sequence to an infinite sequence (with repetitions) cf. 

the last paragraph of the proof of Theorem 3, below. Going in the other direction it 
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where 

lin /(x1, x2, ..., xn, y) = k df (Ey)(z)(z _y D /(x1, x2, x.*, xn, z) = k). 

It is obvious that a trial and error predicate is always arithmetical. 
How non-constructive can such a predicate be? In other words 

Question 1: What are necessary and sufficient conditions (in terms of the 
Kleene-Mostowski Hierarchy of arithmetical predicates) that P be a trial 
and error predicate? 

It is obviously better if we know, not just that P is a trial and error 
predicate, but that (by using a suitable program) we can keep our machine 
from ever having to change its mind more than k times (for some fixed k, 
independent of the particular x1, X2, . . ., xn about which we are asking - 
i.e., k is independent of the input). To make this precise, call a predicate P 
a k-trial predicate if there is a g.r. function / and a fixed integer k such 
that2 (for all x1, X2, . . ., Xn) 

(1) P(xi, . .. , ) lim /(x1, x2, . A.,Xn.Y) 1, 

(2) There are at most k integers y such that 

(X1, X2, . * *, XnyY)# /(x1, x2, . .. Xn, Y+ 1. 

Since a k-trial predicate is obviously arithmetical, we are led to ask 
how non-constructive such a predicate can be, i.e., 

Question 2: What are necessary and sufficient conditions that there exist 
a k such that P is a k-trial predicate? 

Our second group of results is connected with the meta-theory of quanti- 
fication theory (without identity). A number of years ago, Mostowski3 
reported on his unsuccessful attempts to find a consistent formula of 
quantification theory with no model in the "smallest field of sets containing 
the recursively enumerable sets". Since "set" here means set of n-tuples, 
what Mostowski wanted is, in our terminology, a formula with no model 
in which (1) the universe of discourse is the natural numbers; and (2) the 
predicate letters are all interpreted as r.e. (recursively enumerable) predi- 
cates, or truth functions (i.e. Boolean combinations) of r.e. predicates. 

The main result of ? 3 is: a formula of this kind (the kind wanted by 
Mostowski) does not exist. Every consistent formula of quantification theory 

suffices to instruct the machine that it is to "print out" an answer only when it is 
different from the previous answer. 

2 Note that we do not require the function / to be such that P(xl, . . ., Xn) = 

lim /(xi, . ., Xn, y) = 0 - however, this condition may also be satisfied as well, 
Y-,OO 
by replacing the given function / by /*, where /*(xi, . . ., Xn,y) = 1 if /(xi, * * , x",y) 
= 1 and /*(xi . ., y) = 0 otherwise. 

3 Cf. [3]. 
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does have a model in y1*.4 (This result applies only to quantification theory 
without identity.) The proof uses Theorems 1 and 2, which are the answers 
to Questions 1 and 2, and the Hilbert-Bernays-Kleene result5 that every 
consistent formula of quantification theory has a model in Z2nrH2. In 
1957 I gave an example of a consistent formula of quantification theory 
with no model in which all the predicates belong to E1uH11 (answering 
another question of Mostowski).6 

? 2. Characterization theorems. 
THEOREM 1. P is a trial and error predicate if and only i/ P e Z2n H2. 
PROOF. Suppose P is a trial and error predicate. (I shall give the proof 

for a one-place predicate. The case of an n-place predicate is exactly the 
same except that "x1, x2, . . ., x," has to be put for "x" throughout.) 
Then by the definition (cf. ? 1), there is a g.r. function / such that for 
every x: 

P(x) _ lim (xy) = 1 

P(x) = lim /(x, y) = 0. 

Now we observe that since / must approach either 0 or 1, 

(1) P(x) lim /(x, y) = 1 implies that 

(2) P(x) (y)(Ez)(/(x, y) 0 1 D (z>y & /(x, z) 1)). 

Thus P e 112, and by (1) we have P e Z2, since the predicate "lim/(x, y) = 1" 
is in 2J2. 

To prove the other half of the theorem, assume 

(3) P(x) (Ea)(b)Ri(x, a, b) 

P(x) (Ea)(b)R2(x, a, b) 

where R1 and R2 are recursive. 
Let L(x, a, c) mean that a is the smallest integer such that 

[(Eb)<c(R2(x, a, b) & ~(Eb)<cRj(x, a, b)) .v. (Eb)<,(R1(x, a, b) & 

_ Eb)<c2\ (x, o ha, b f).r ar O 

4 An expression (Ex) (y) R, where R is a recursive predicate, is called a <2-expression 
here, and (x)(Ey)R is called a 112-expression. (Cf. [1], ch. 9; Davis, however, uses 

"P" and "Q" where we use E and II.) We use K* to denote the closure of a class K 

of predicates under truth functions. In particular, El* is the smallest class of predicates 
containing the r.e. predicates and closed under truth-functions. 

5 Cf. [2], p. 394, Theorem 35. 
8 Cf. [4]. 
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Define: 

(4) /(x, y) = 1 (Ea)(L(x, a, y) & (Eb)<yRi(x, a, b)) 

/(x, y) 0 otherwise. 

/ is general recursive, since from the definition of L we can determine 
whether or not there is an a such that L(x, a, y), once we are given x and y 
(there is at most one such a). Formally, it suffices to note that a must be 
less than y for L(x, a, y) to hold, and that the definition of L contains 
only bounded quantifiers. 

Let P(x) be true, and let a be the least a such that for every b Ri(x, a, b) 
holds. Since P(x) is true, there is for every a' at least one b such that 
R2(x, a', b); and since a is least, there is also for every a' < a at least one 
b such that Ri(x, a', b). There will thus be 2a numbers bo, b, ..., ba-1, ba-1 
such that Ri(x, 0, bo), R2(x, 0, bb), .. ., R(x, a- 1, ba-i), R2(x, a- 1, b -1). 
Taking y sufficiently large so that each of these 2a numbers is less than y, 
a < y, we see that L(x, a', y) does not hold for a' < a. And if y is also 
bigger than the least b such that R2(x, a, b), then, checking the definition, 
we see that L(x, a, y) holds. Thus, if P(x) is true, for sufficiently large y 
we will have /(x, y) = 1; and in a similar way we can show that if P(x) is 
false, then for sufficiently large values of y we will have both L(x, a, y), 
where a is the smallest integer such that (b)R2(x, a, b), and /(x, y) = 0. 
This completes the proof of the theorem. 

THEOREM 2. There exists a k such that P is a k-trial predicate if and only 
if P belongs to El*, the smallest class containing the recursively enumerable 
predicates and closed under truth-functions. 

PROOF. Suppose P is a k-trial predicate. Then by the definition (cf. ? 1) 
there is a g.r. function / such that 

(1) P(x) lim/(x,y) = 1 

(2) there are at most k integers y, for each x, such that &(x, y) 7& J(x, y+ 1). 
(Attention is confined to one-place predicates P, for simplicity.) 

Now define Y (x) (for i = 1, 2, ..., k) as meaning that there are at 
least i integers y such that /(x, y) # /(x, y+ 1) & /(x, ai+ 1) = 1, where ai 
is the ith integer y, in order of magnitude, such that /(x, y) =A /(x, y+ 1); 
and define Ni(x) as meaning that there are at least i integers y such that 
/(x, y) I /(x, y+ 1) & /(x, ai+ 1) =# 1. Finally, define Yo(x) as meaning that 
/(x, 0) 1 and No(x) as meaning that /(x, 0) # 1. Then all the predicates 
Yj and Ni are recursively enumerable, and we have: 
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In proving the other half of the theorem, we will again confine attention 
to one-place predicates (or sets), since the n-place case introduces no 
additional ideas. Let P E l*. Then 

P = (Al-Bi) U (A2-B2) U ... U (An-Bn) for some n 

where the Ai and Bi are r.e. Following Kleene [2], let T(e, x, y) mean that 
y is the number of a computation that the number x belongs to the r.e. set 
with g6del number e. We define f(x, y) as follows (where al, ..., an and 
bl, ...,b are g6del numbers of Al, ..., An and B1, ., ); 

/(x, y) = 1 if there are i < n, e < y such that (T(ai, x, e) & (e)<yT(bi, x, e)) 

/(x, y) =0 otherwise. 

Then / has the properties (1) and (2) (taking k = 2n), as is easily verified. 

? 3. Applications to logic. 
THEOREM 3. Every consistent formula of quantification theory without 

identity has a model in El*. 
PROOF. If A contains m predicate letters Pi, each of which is at most 

n-place, we construct an A' which is obviously satisfiable if and only if A is, 
and which has a single n+ 1-place predicate letter and m distinct individual 
constants by replacing Pi(xi, . . ., Xr) (1 < r < n) by P(xi, ..., Xr, as, ..., as) 
(with n+ 1 argument places). 

Suppose A' has a model in El*. Then the predicates Pi defined as follows: 

Pl(Xl. , X,.) = df P(Xl,* , Xrj, al, a , a) 

Pm(Xl , Xr.) =df P(x1, *(x , Xr, am, ..., am) 

are also in El*. Hence it suffices to show that if A' is consistent then A' 
has a model in E1*; it will then automatically follow that if A is consistent 
then A has a model in Z*l. 

Finally, A' has a model in El* if and only if its existential quantification 
with respect to ai, ..., am has a model in El*. Hence the theorem reduces 
to the following Lemma: 

LEMMA. Every consistent formula of quantification theory (without identity) 
with one predicate letter and no individual constants has a model in El*. 

To prove this we start with a model in Z2nH2 (every consistent formula 
has such a model, by Theorem 35 of [2], p. 394), and modify it so as to 
obtain a model in El*. Accordingly, let P be the sole predicate letter in A, 
and let A be true when P is interpreted as standing for the predicate F, 
where FIE Z2n H2. By Theorem 1, there is a general recursive function 
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(x .., xn, y) such that 

F(xi, . . .,x) lim /(xi, . . *, xny) 1 

F(xi, . . .,x") lim /(x, xn, y) 0 
lI-oo 

We define sets of integers R(i) as follows :7 
if i # 0, R(i) = {J(b, i)} where b is the smallest integer such that for all 
Xi) ... Xn, y, (y>b & x1, ..., xn i- f X ..., x ,y) = I(xi, .,Xn, b)) 
(i.e., b is a "modulus of convergence" of I, for xl, ..., xn <i). 

We take R(O) as the set of all integers not belonging to any set R(i), 
i =# O. 

It is easily proved that the sets R(i) are all disjoint and non-empty. 
(Towards disjointness, use the fact that J(a, b) = J(c, d) implies that 
b = d; and towards non-emptiness observe that for any k, J(k, O) e R(O).) 
And by the definition of R(O) every integer is in one of the sets R(i). Thus 
R-1 maps the set of integers many-one onto the set of integers. A predicate 
of integers and its inverse image under any function mapping the set of 
integers onto the set of integers satisfy the same sentences of logic without 
identity. Hence A is true when P is interpreted as standing for the predicate 
G which we define as follows: 

G(xi, --,Xn) = (Eyl . . .IYn) flyl., .Yn) &xle R(yi)& ... & Xne R(Yn)). 

It only remains to prove that Ge El*. 
To prove that G E1*, observe that for any integer x, there are only 

two possibilities: x e R(O), and x e R(L(x)). Hence for any n integers 
xi, ..., xn, there are just 2n possible cases: 

1) xl, .. .,Xn E R(O) 

2) Xi, . .., xn-1 ,E R(O), xn e R(L(xn)) 

2n) xl e R(L(xi)), . XXn e R(L(xn)) 

Moreover, the truth value of G(xi, ..., xn) (or G(X), as we shall hence- 
forth write for short) on the assumption that any given case holds can be 
effectively determined: for instance, the truth value of G(.X) on the as- 
sumption that case 1) holds is that of F(O, 0, . . ., 0) (which we will assume 
given); while if, say, case 2n- 1) holds, the truth value of G(X) is that of 
F(L(xi), . . ., L(xn-1), 0). In this case we simply find the largest of the 
numbers L(xi), . .., L(xn-l). Suppose it is L(x;). Then G(X) is true if 
(L(xi), . .., L(xn-1), 0, K(xj)) = 1, and false otherwise. And similarly 

with all the other cases. 

7 Here J, K, L are the standard pairing and inverse-pairing functions (see [1], 
pp. 43-45). 
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We can now write down a series of zeros and ones which will terminate 
in 1 if G(X) is true and in 0 if G(X) is false, as follows: 

Compute the truth value of G(X) according to the assumption that case 
2n) holds, and hence x1 E R(L(xj)), where L(xj) is the largest of the numbers 
L(xi), and put down 1 as our "first trial answer" if the value is "truth" 
and 0 if the value is "falsity". The first trial answer is never revised unless 
an integer k is generated such that K(xj) < k, but for some zi, . . ., Zn <L(xj), 
it is not the case that /(zl, .. ., Zn, K(xj)) /(z1, ..., z. , k). If this ever 
-happens, then f(zi, . .. Z. , y) is not equal to f(zl, ..., zn, K(xj)) for all 
y>K(x;), zi, ... *, Zn<L(xj), and xJ eR(O). 

If we ever discover that xj E R(O), then we pick the largest of the re- 
maining numbers L(xi) and repeat the reasoning to arrive at our next trial 
answer. (If L(xj') is the largest of the remaining numbers L(xi), we can 
determine the truth value of G(X) on the assumption that x1 E R(L(xE )), 
because we now know that x1 E R(O), and so it suffices to know the truth 
value of F(zi, . . ., Zn) for zl, . . ., Zn <L(xj') to compute that of G(X).) 

Proceeding in this way, we cannot change our trial answer more than n 
times (since, except for the trial answer corresponding to case 1), a trial 
answer is put down only when it is assumed that xi E R(L(xi)) for some i; 
and such an assumption is either retained forever - in which case it is 
correct - or abandoned at some time and never subsequently reinstated). 

Let the above procedure for putting down trial answers be mechanized, 
and program the Turing machine so that at any stage y it repeats the last 
number it put down, if no new trial answer is forthcoming at that stage. 
Let g(xl, . . . X, y) = the number put down by the machine at the yth 
stage. Then g satisfies the conditions listed in Theorem 2, and it follows 
that G El*. 

COROLLARY. Every n-place predicate in 2nH2 has an n-trial predicate 
as an inverse image under a suitable function mapping the integers onto the 
integers. (This is what was really proved after the Lemma. Theorem 3 is 
an immediate consequence of this fact by the discussion preceding the 
Lemma. By way of contrast, recall that there exist consistent formulas 
with one predicate letter with no model in ZlU l. Thus it is not true that 
every n-place predicate in 12nH12 has an inverse image in E1uH11, even 
if we allow arbitrary functions mapping the integers onto the integers.) 

Hitherto we have considered models in which the domain (the range of 
the individual variables) was the set of all non-degative integers. For 
models of this kind, Theorem 3 is false for predicate calculus with identity, 
since there are even consistent formulas with no infinite model at all. If we 
generalize slightly, by allowing the domain to be any recursive set, then 
the question whether Theorem 3 extends also to predicate calculus with 
identity remains open. We are, however, able to prove: 
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THEOREM 4. Every consistent formula of predicate calculus with identity 
has a recursive model with a H1 domain. 

PROOF. In the foregoing proof, it suffices to modify the definition of 
R(O) by taking R(O) J(b, 0), where b is the smallest integer such that 
for all y>b, 1(O, ..., 0, y) = 1(0, ..., 0, b). Let S U R(i). Since the 
mapping 

i - any member of R(i) 

is now one-one (because R(i) is now a singleton, for all i), it follows that 
<S, G> is a model for A in predicate calculus with identity, where G is defined 
as in the preceding proof. Define G* as follows: G*(xl, . . ., xn) is true if 
and only if the truth value of G(xi, . . ., xn) is "truth" on the assumption 
that case 2n) holds (we showed above that this could be effectively determi- 
ned). Then G* is a recursive predicate (we make free use of Church's Thesis; 
however it is straightforward to eliminate it by the techniques of [2]), and 
G* agrees with G whenever case 2n) holds; hence, whenever all the argu- 
ments E S. Thus <S, G*> is also a model for A. 

It remains only to show that S is a HIl set (i.e., S has a recursively 
enumerable complement). To do this, we observe that S can be defined as 
follows: 

S -{J(b, i) I (Y) >b(Zl) ... (Zn) (Z1, * * *, Zn:!H~i =-Ati - (Z1 * ** Zn, A) f AZi, . . ., Zn, b)) & 
(b')<b((Z1) ... (zn) (zi, * * *, Zn! !i = /(zi, * * *, zn b') (Z1, * * , zn, b)) At 

(Eb')<b(Ez1) szi*.*. (Ezn) <NziZl . * ., Xzn, b') =A& If , * * *, Zn, b) & b'<Vb"))} 

(To verify this, note that if b is the smallest modulus of convergence of /, 

for arguments bounded by i, then for every b' smaller than b and such 
that /(z1, * . , zn, b) = /(zl, ..., z., b') when the z's are bounded by i, there 
must be a b" "between" b and b' on which /(z1, . ., z. , b") fails to equal 

.z, . . ., zn,.b') for some z's bounded by i; for otherwise b' would already 
be a modulus of convergence for arguments bounded by i, and smaller 
than the least modulus of convergence, which is a contradiction.) 

It is well known that Z2nI12 is the class of predicates of degree of un- 
solvability < O' (i.e., the class of predicates Turing reducible to K, where 
K is any complete r.e. set). Thus our Theorem 1 states that the trial and 
error predicates are exactly the ones of degree < O'. This fact makes it 
very easy to give informal proofs of the existence of predicates of degree 
< O' satisfying various conditions, just as Church's Thesis makes it easy 
to give informal proofs of the existence of recursive and r.e. predicates 
satisfying various conditions. 

** The following theorem (unpublished) is due to Hartley Rogers, Jr.: 

** Added August 24, 1964. 
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THEOREM. For any set A, let B(A) be the smallest class containing all 
sets many-one reducible to A, and closed under truth functions. Then B(A) 
contains exactly those sets which are reducible to A by bounded truth tables. 

Thus our El* is the class of all sets reducible to K by bounded truth 
tables (where K is, again, any complete r.e. set). Hartley Rogers, Jr. has 
noted, after reading the present paper, that our proof of Theorem 3 can 
be modified to yield a construction which shows that for any A, if A is 
Turing reducible to K, then there exists an / and a C such that f(C) A, 
/(C) = A, and C is reducible to K by bounded truth tables. Thus our 
logical result can be obtained in a way which uses only the notions of 
Post's 1944 paper, without the introduction of trial and error predicates 
and k-trial predicates. It seems to us, however, that the "modulus of 
convergence" idea, used in the proof-of Theorem 3, is very easily understood 
when presented, as here, in terms of the ideas of trial and error and k-trial. 
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