
Angluin’s Characterization Theorem for Effective

Identifiability

Nina Gierasimczuk Dick de Jongh

February 22th, 2013

1 Uniformly recursive families

Let ϕ be any fixed Gödel numbering of all partial recursive functions over N.
The family (Wj)j∈N is defined as follows: for all j ∈ N, Wj = {n ∈ N | ϕj(n) ↓}.
Let (Li)i∈N be a recursively enumerable class of recursively enumerable sets.

Definition 1 A family of languages (Li)i∈N is uniformly recursively enumer-
able iff there is a partial recursive function f : N × N → {0, 1} such that
Lj = {w ∈ N | f(j, w) = 1} for all j ∈ N.

Definition 2 A family of languages (Li)i∈N is uniformly recursive iff there is a
total recursive function f : N×N→ {0, 1} such that Lj = {w ∈ N | f(j, w) = 1}
for all j ∈ N.

Proposition 1 If an infinite family of languages L = (Li)i∈N is uniformly
recursive, then there is also a uniformly recursive enumeration (L′

i)i∈N of L in
which each language occurs exactly once (L′

i = L′
j ⇒ i = j).

Proof Let L = (Li)i∈N be uniformly recursive. L′
0 = L0. L′

n+1 is the first Lj
not in {L′

0, . . . , L
′
n} such that: Lj differs from each of L′

0, . . . , L
′
n on at least one

of 0, . . . , j. That such an Lj exists follows from the infinity of L. Note also that
an Lj may be skipped for a while because it only differs from an earlier language
with regard to some large numbers. Ultimately any difference will show up of
course, and therefore all languages will be part of the enumeration in the long
run. �

2 Angluin’s characterization

Theorem 2 (Angluin’s Theorem) A uniformly recursive family L is effec-
tively identifiable iff there exists a recursive function F such that for each i, n,
F (i, n) is a finite set Dn

i , with m≤ n ⇒ Dm
i ⊆ Dn

i , and the limit Di =
⋃
n∈ND

n
i

is a telltale set for Li.
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Proof
⇒: Assume that M is a recursive learner that identifies L. We have to define,
for each i, a recursive sequence of increasing finite sets Dn

i that in the limit
converges to a finite telltale set Di for Li.

Let x1, x2, x3, . . . effectively enumerate Li. We follow the idea of the locking
sequence theorem to find a locking sequence (which by now we know to exist!),
and then use the fact that the elements of a locking sequence form a telltale
set. We follow the same procedure in always looking for an extension with a
different value, and produce in that way longer and longer sequences σn. This
time it will be an unending search, but from a certain point an extension with
a different value will no longer be found so that we stabilize on a certain finite
sequence, and thereby on a fixed finite set. A second difference will be that,
since we want to be recursive we cannot look through all sequences at each
stage; we simply restrict the search at stage n to sequences of length ≤ n of
the elements x1, x2, . . . , xn, in the long run all sequences will be checked in this
way.

• Stage 1. We start with the string 〈x1〉. Note that in the former proof 〈x1〉
denoted a sequence, in this proof it is the number coding the sequence.
Now, if for some τ of length 1 containing only x1 (there aren’t too many
of those!), M(〈x1〉∧τ) 6= M(〈x1〉), take σ1 = 〈x1〉∧τ for the first of such
sequences, otherwise take σ1 = 〈x1〉.

• Stage n+ 1. Assume σn has been constructed in stage n. Now, if there is
a sequence τ of length ≤n+ 1 containing only x1, x2, . . . , xn+1 such that
M(σn

∧ τ) 6= M(σn), take σn+1 = σn
∧ τ ∧〈x1, . . . , xn+1〉 for the first one

of such sequences, otherwise take σn+1 = σn.

In each case let Dn
i be content(σn). From the proof of the locking sequence

theorem it is clear that this procedure cannot keep producing new sequences,
from a given stage on the σi and therefore the Dn

i will remain the same. From
the point that that is the case onwards we have a locking sequence σn for Li
and therefore Dn

i = Di will be a telltale set for Li.

⇐: Assume a two-place recursive function Dn
i is given with the right properties.

We define a learner in the following manner:

M(σ) = µi≤ lh(σ)(D
lh(σ)
i ⊆ content(σ) ⊆Li) if such i exists, otherwise

= µi (content(σ) ⊆ Li).

Let t be a text for Li and Lj 6= Li for j < i. It is sufficient to show that,
for n large enough, M(t[n]) = i. Fix n≥ i such that Dn

i ⊆Di⊆ content(t[n]).
Then i satisfies the relevant conditions, and there are only finitely many j < i
satisfying the conditions. The proof now goes in exactly the same way as for
the non-effective version of Angluin’s theorem. �

Note that in the above proof learner M is always defined if the text t is for
some Li ∈ L, i.e., M is always defined if we have index-preserving identification.
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In that case M is also consistent.
There are some remarks here.

1. The proof of⇒ above does not at all depend on the space of the hypotheses
made by the recursive learner M , it always leads to the definition of a
telltale set in the limit by a recursive function.

2. The proof of⇐ shows that we have such a telltale set in the limit by a re-
cursive function, then we use only the numbers of the uniform enumeration
in defining the learner, so L is exactly identifiable.

From this we can conclude that if A uniformly recursive family is identifiable,
it is exactly identifiable.
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