
Behaviorally correct identification

Nina Gierasimczuk Dick de Jongh

March 8th, 2013

In behaviorally correct identification, BC-identification of languages (previ-
ously called extensional identification) the success criterion is not converging to
a unique index for the target language but stabilizing to an arbitrary series of
indices for the target language.

Example 1 {K ∪D |D finite} is effectively BC-identifiable.

Proof {K ∪D |D finite} is BC-identified by M defined as follows:
M(σ) = U(k, content(σ)) where k is a code for K. �

Of course, {K∪D |D finite} is not effectively identifiable, since {K∪{x} |x ∈ N}
isn’t.

Theorem 2 (Baliga, Case, Smith) A uniformly recursive L is effectively BC-
identifiable iff L has telltale sets.

Proof From left to right is obvious, since effectively BC-identifiable implies
identifiable, and by the non-effective Angluin theorem we then have telltale
sets.

Suppose that r.e. indexed and uniformly recursive L has telltale sets Di for
each Li. To prove is that there exists a function M that BC-identifies L.

We have to define M on an arbitrary σ, but since M needs to work properly
only in the limit and only on texts for some Li we assume a lot about σ, and
we don’t care what happens before that assumption is justified.

Consider a σ that is part of some text for Li such that Lj unequals Li for each
j < i. We can assume thatDi is part of σ, and write n formax(lh(σ), content(σ)).

We look at Lj with j≤n restricted to {0, . . . , n}, notation L
(n)
j . Consider

the j < i such that content(σ) is in Lj , i.e., in L
(n)
j . This then means that Lj is

not a proper subset of Li: either Lj properly contains Li, or neither is contained
in the other. We assume in addition that if Li contains an element not in Lj ,
then there is already one in σ. Hence the only Lj with j < i that contain σ are

such that L
(n)
j contains (properly or improperly) L

(n)
i .

Of course, if we consider σ we do not know the i, but after we have restricted

our attention to those Li such that L
(n)
i contains σ, we do know that we can

exclude any i such that for some j < i, L
(n)
j contains σ, but L

(n)
i contains an

element not in L
(n)
j .

1

This means that, for any σ, we can restrict our attention to Pn = {i≤n |L(n)
i

contains σ and for all j < i such that L
(n)
j contains σ, L

(n)
j is a superset of L

(n)
i }.

Clearly, this set is linearly ordered by the converse inclusion relation. The proper
i is somewhere in there, but we do not know where. We have not restricted the
behavior of the j > i sufficiently.

To determine the value of M(σ) we fix the n and enumerate a language in
stages s with at stage 0 the situation we just described. This enumeration
determines the index = the value M assigns to σ. Of course the index
will have to be an index for the right language Li.

The last one of the series of languages in Pn, Ljmax is the smallest one and

we cannot go wrong by starting the enumeration in stage 0 with L
(n)
jmax

. In the
stages s> 0 we still investigate only the languages L1, . . . , Ln, but now restricted
to n+ s instead of n. We set

Pn,0 = Pn and

Pn,s = {i≤n |L(n+s)
i contains σ and for all j < i such that L

(n+s)
j contains

σ, L
(n+s)
j is a superset of L

(n+s)
i }.

Again this set is linearly ordered. Each time we take the last element jsmax.
The language Ljsmax

is the smallest language still in the running at stage s. Of
course, it contains (or =) the last language of the previous stage. We add in
the enumeration the elements in Ljsmax

that have not been enumerated before.
To see that the right language is enumerated we just have to see that from

a certain point on jsmax will be equal to i (or at least will designate the same
language). If any Lj with j > i is a language different from Li that contains
Di, then it will contain an element not in Li. Ultimately we will discover this

element in L
(n+s)
j and j will be excluded from Pn,s. So, we will end up with Li.

Note that the procedure is only BC, because the enumeration is
dependent on the starting point n, which comes from σ. Note also that
it is essential that the language is enumerated as an r.e. set. It is not possible
to give an index of the characteristic function of the recursive set. It seems
that effective BC-identification collapses to standard effective identification if
one requires indices of the characteristic function of the recursive set. �

2

