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Abstract

Studying the learnability of classes of recursive functions has attracted considerable interest for at least four decades. Starting
with Gold’s (1967) model of learning in the limit, many variations, modifications and extensions have been proposed. These
models differ in some of the following: the mode of convergence, the requirements intermediate hypotheses have to fulfill, the set
of allowed learning strategies, the source of information available to the learner during the learning process, the set of admissible
hypothesis spaces, and the learning goals.

A considerable amount of work done in this field has been devoted to the characterization of function classes that can be learned
in a given model, the influence of natural, intuitive postulates on the resulting learning power, the incorporation of randomness into
the learning process, the complexity of learning, among others.

On the occasion of Rolf Wiehagen’s 60th birthday, the last four decades of research in that area are surveyed, with a special
focus on Rolf Wiehagen’s work, which has made him one of the most influential scientists in the theory of learning recursive
functions.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Emerging from the pioneering work of Gold [52,53], Solomonoff [103,104], Barzdin1 [17], Thiele [106], Blum
and Blum [21], and the work done in Riga [13–15], inductive inference of recursive functions has fascinated many
researchers.

By definition, inductive inference is the process of generating hypotheses for describing an unknown object
from finitely many data points about the unknown object. For example, when exploring a physical phenomenon
by performing experiments, a physicist obtains a finite sequence of pairs (x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).
From these examples the physicist tries to infer the law f describing the connection between x and f (x). Usually
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f is a mathematical expression, a formula, i.e., in a very general scenario an algorithm computing the function f .
Using more and more examples, the hypothesis on hand may be confirmed or falsified. If it is falsified, usually a new
hypothesis is generated.

Many philosophers have studied inductive inference during the last 2000 years, too, and several of their findings and
principles have served as philosophical basis of the mathematical theory of inductive inference which in turn shed more
light on these findings and principles or has suggested alternatives and refinements (cf., e.g., William of Ockham [89],
Freivalds2 [40], Board and Pitt [23], Popper [95], Case and Smith [30] as well as Klette and Wiehagen [71]).

The mathematical basis for the work presented in this survey goes back to Solomonoff [103,104] who proposed
criteria for selecting a hypothesis explaining given data best, Putnam [96] who anticipated several of the earlier results
(though on an informal basis) and Gold [52,53] who has provided a thorough recursion theoretic basis of inductive
inference.

Gold [53] considers inductive inference to be an infinite process. The objects to be inferred are recursive functions.
In every step n = 0, 1, 2, . . . of the inference process the inference algorithm has access to successively growing
initial segments (x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)) of the graph of the target function. Using these initial
segments, the inference algorithm computes hypotheses hn which are interpreted as numbers of programs in a given
computable numbering of (all) partial recursive functions. We refer to such a given numbering as a hypothesis space.
Usually it is required that the hypothesis space contains a program that is correct for the target function. If hn 6= hn+1,
then we say that a mind change occurred. The sequence of all hypotheses is required to converge to a correct program
for the target function. That is, beyond some point, no further mind change occurs, and the hypothesis repeated from
that point on is a program that computes the target function without errors.

The model just described is Gold’s [53] identification in the limit (cf. Definition 8). Based on identification in
the limit, a huge variety of inference models has been proposed and studied. Possible modifications comprise the
specification of correctness, the mode of convergence, requirements on the intermediate hypotheses output, the set of
allowed inference algorithms, the set of admissible hypothesis spaces, and the source of information available, among
others.

Nowadays there is a largely developed mathematical theory and many results have found their way into
monographs [13–15,78], books [90,62], and surveys [6,7,35,71]. On the one hand, the results obtained have
considerably enlarged our understanding of inference processes and learning and their connections to philosophy,
cognitive science, psychology, and artificial intelligence. On the other hand, younger counterparts of learning theory
and machine learning share with inductive inference several methods, approaches, ideas, techniques and even
algorithms and throughout this survey we shall occasionally point to them.

Whenever one tries to survey such a large field, one has to make a certain selection. In the present survey we focused
on a larger part on the earlier work done in the field and on research performed by Rolf Wiehagen and researchers
who worked on similar problems. An obvious reason for this choice is of course Rolf Wiehagen’s 60th birthday which
inspired this project. Another aspect was the availability of the relevant literature and presence and non-existence,
respectively, of surveys covering already part of the research undertaken in inductive inference of recursive functions.
For example, there are beautiful surveys concerning the learnability of recursive functions via queries (cf. Gasarch and
Smith [50]), by teams of inductive inference machines (cf. Smith [100]), or probabilistic inductive inference (cf., e.g.,
Pitt [92], Ambainis [4]). So, these parts of the theory are only touched in the present paper as is the material presented
in Angluin and Smith [6,7]. Likewise, we had no intention to rewrite the comprehensive paper by Case and Smith [30]
which covers many earlier theoretical results of the inductive inference of recursive functions. But of course, some
overlapping occasionally occurs.

After introducing some basic notions and notations in Section 2, we start with a list of desiderata seemingly arising
naturally when one wishes to define a learning model. In Section 3, we study the resulting learning model, provide
different characterizations of it and point to its strengths and weaknesses. We continue with possible alternatives to
enlarge the learning power of the first model. This directly leads us to the notion of consistent learning. Consistency,
which here means that inference algorithms always return hypotheses agreeing with the information they have seen
so far, is often presupposed in applications. The question to which extent this affects learning–and the resulting
(in)consistency phenomenon–are studied in this survey in more detail (cf. Sections 4 and 7).

2 The names “Freivalds” and “Freivald,” as used in this article, refer to the same researcher. But in our understanding the author of a paper is
given on the title page of the article in question. Since Freivalds used different spellings of his name, we cite the papers here as they are in print.
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This study performed in Section 4 as well as the results obtained earlier suggest to introduce further learning
models, among them Gold’s [53] original model of learning in the limit (cf. Section 5). Here we also look at different
variations of learning in the limit by changing the mode of convergence, by varying the set of admissible strategies
and the information supply.

For gaining a better understanding of the similarities and differences of the various learning types presented so far,
we then continue with characterizations in terms of complexity and of computable numberings (cf. Sections 6 and 8,
respectively).

While having provided a rather comprehensive treatment of the material mentioned so far, in Section 9 we briefly
survey some additional research such as learning from good examples, intrinsic complexity and uniformity. The reason
we only sketch these areas is the same mentioned above, i.e., there are already comprehensive articles in print that
cover these areas. Finally, we provide a summary and discuss open problems.

2. Preliminaries

Unspecified notations follow Rogers [97]. In addition to or in contrast with Rogers [97] we use the following. By
N = {0, 1, 2, . . . } we denote the set of all natural numbers. We set N+

= N \ {0}. The set of all finite sequences of
natural numbers is denoted by N∗.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set of set S. Let ∅, ∈, ⊂, ⊆, ⊃, ⊇,
and # denote the empty set, element of, proper subset, subset, proper superset, superset, and incomparability of sets,
respectively.

By P and T we denote the set of all partial and total functions of one variable over N. The set of all partial
recursive and recursive functions of one respectively two variables over N is denoted by P, R, P2, R2, respectively.
Let f ∈ P , then we use dom( f ) to denote the domain of the function f , i.e., dom( f ) = {x | x ∈ N, f (x) is defined}.
Additionally, by Val( f ) we denote the range of f , i.e., Val( f ) = { f (x) | x ∈ dom( f )}. We use R{0,1} to denote
the set of all f ∈ R satisfying Val( f ) ⊆ {0, 1}. We refer to R{0,1} as to the set of recursive predicates. A function
f ∈ P is said to be monotone provided for all x, y ∈ N with x ≤ y we have, if both f (x) and f (y) are defined then
f (x) ≤ f (y). By Rmon we denote the set of all monotone recursive functions.

Any function ψ ∈ P2 is called a numbering. Moreover, let ψ ∈ P2, then we write ψi instead of λx .ψ(i, x) and set
Pψ = {ψi | i ∈ N} as well as Rψ = Pψ ∩R. Consequently, if f ∈ Pψ , then there is a number i such that f = ψi .
If f ∈ P and i ∈ N are such that ψi = f , then i is called a ψ-program for f . Let ψ be any numbering, and i, x ∈ N;
if ψi (x) is defined (abbr. ψi (x)↓ ) then we also say that ψi (x) converges. Otherwise, ψi (x) is said to diverge (abbr.
ψi (x)↑ ).

For functions f, g ∈ P and m ∈ N we write f =m g iff {(x, f (x)) | x ≤ m and f (x) ↓ } = {(x, g(x)) | x ≤

m and g(x)↓ }; otherwise we write f 6=m g.
A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [97]) iff Pϕ = P , and for any numbering ψ ∈ P2,

there is a compiler c ∈ R such that ψi = ϕc(i) for all i ∈ N. Göd denotes the set of all Gödel numberings. Let
ϕ ∈ Göd and let f ∈ P; then we use minϕ f to denote the least number i such that ϕi = f .

Furthermore, let NUM = {U | (∃ψ ∈ R2) [U ⊆ Pψ ]} denote the family of all subsets of all recursively
enumerable classes of recursive functions.

Following [75] we call any pair (ϕ,Φ) a measure of computational complexity provided ϕ is a Gödel numbering
of P and Φ ∈ P2 satisfies Blum’s [22] axioms. That is, (1) dom(ϕi ) = dom(Φi ) for all i ∈ N and (2) the predicate
“Φi (x) = y” is uniformly recursive for all i, x, y ∈ N.

Sometimes it will be suitable to identify a recursive function with the sequence of its values, e.g., let α =

(a0, . . . , ak) ∈ N∗, j ∈ N, and p ∈ R{0,1}; then we write α j p to denote the function f for which f (x) = ax , if
x ≤ k, f (k+1) = j , and f (x) = p(x −k−2), if x ≥ k+2. Let g ∈ P and α = (a0, . . . , ak) ∈ N∗; we write α v g iff
α is a prefix of the sequence of values associated with g, i.e., for any x ≤ k, g(x) is defined and g(x) = ax . If U ⊆ R,
then we denote by [U] the set of all prefixes of functions in U . Also, it is convenient to have a notation for the set of all
finite variants of functions in U . We use [[U]] for this set, i.e., [[U]] = { f | f ∈ R, ∃ f ′

∈ U ∧ ∀
∞x[ f (x) = f ′(x)]}.

The quantifier ∀
∞, as used here, means “for all but finitely many.”

Furthermore, using a fixed encoding 〈. . .〉 of N∗ onto N we write f n instead of 〈( f (0), . . . , f (n))〉, for any
n ∈ N, f ∈ R. Furthermore, the set of all permutations of N is denoted by Π (N). Any element X ∈ Π (N) can be
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represented by a unique sequence (xn)n∈N that contains each natural number precisely once. Let X ∈ Π (N), f ∈ P
and n ∈ N. Then we write f X,n instead of 〈(x0, f (x0), . . . , xn, f (xn))〉 provided f (xk) is defined for all k ≤ n.

Finally, a sequence ( jn)n∈N of natural numbers is said to converge to the number j iff all but finitely many numbers
of it are equal to j . A sequence ( jn)n∈N of natural numbers is said to finitely converge to the number j iff it converges
in the limit to j and for all n ∈ N, jn = jn+1 implies jk = j for all k ≥ n.

In the following section, we introduce the subject of this survey, i.e., learning of recursive functions. For making
this survey self-contained, first we briefly outline what we have to specify in order to arrive at a learning model for
recursive functions. Then we provide an important example.

3. Defining a learning model

In the following, the learner will be an algorithm. We refer to it as a strategy S. That is, we shall require S ∈ P .
The objects to be learned are recursive functions. Thus, the next question we have to address is from what information
recursive functions should be learned. The information fed to the strategy are finite lists of pairs “argument-value,” i.e.,
lists (x0, f (x0)), . . . , (xn, f (xn)). So, for technical convenience we describe this information by using the notation
f X,n defined above. If the order in which examples are presented does not matter, then we restrict ourselves to present
examples in natural order, i.e., we consider lists (0, f (0)), (1, f (1)), . . . , (n, f (n)). If examples are presented in
natural order, the argument X is redundant. Thus, we can use the notation f n defined above to describe the information
fed to the strategy.

Additionally, we require that the entirety of the local information completely describes the function f to be learned.
That means, for every n ∈ N there must be a finite list containing (n, f (n)).

Using the local information f X,n , the strategy computes a number i which is referred to as a hypothesis. Thus,
when successively fed the sequence ( f X,n)n∈N, the strategy computes a sequence of hypotheses which is interpreted
with respect to a suitably chosen hypothesis space. Hypothesis spaces are numberings ψ ∈ P2 which are required to
contain at least one program for every function to be learned.

Finally, we require the sequence of hypotheses formed in the way described above to converge to a program that
correctly computes the target function.

Usually, we consider sets U of recursive functions. Given a class U ⊆ R we then have to ask whether or not the
resulting learning problem is solvable. For obtaining an affirmative answer we have to provide a strategy S learning
every function in U . Otherwise, we have to show that there is no strategy S which can learn every function in U .

In order to have some examples, it is useful to define some function classes which we shall use quite often
throughout this survey. First, let

U0 = { f | f ∈ R and ∀
∞n [ f (n) = 0]}

be the class of all functions that are almost everywhere zero. This class is also known as the class of functions of finite
support. It is easy to see that U0 ∈ NUM.

Next, let (ϕ,Φ) be any fixed complexity measure. We set

U(ϕ,Φ) = {Φi | ϕi ∈ R}

and refer to U(ϕ,Φ) as to the class of all recursive complexity functions.
Another quite popular class is the class of self-describing functions defined as follows. Let ϕ ∈ P2 be any fixed

Gödel numbering; we set

Usd = { f | f ∈ R and ϕ f (0) = f }.

Note that neither U(ϕ,Φ) nor Usd belong to NUM as we shall prove next.

Lemma 1. U(ϕ,Φ), Usd /∈ NUM

Proof. For showing that U(ϕ,Φ) /∈ NUM we first observe that for every class U ∈ NUM there is a function b ∈ R
such that ∀

∞x [ f (x) ≤ b(x)] for every function f ∈ U . This can be seen as follows. Let ψ ∈ R2 be such that
U ⊆ Rψ . Then it suffices to set b(x) = max{ψi (x) | i ≤ x}. Supposing U(ϕ,Φ) ∈ NUM there would be such a
function b for the class U(ϕ,Φ). The desired contradiction is obtained by the following claim.
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Claim 1. Let f ∈ R be arbitrarily fixed. Then there is a ϕ-program i such that ϕi = f and Φi (x) > b(x) for all
x ∈ N.

Let s ∈ R be chosen such that

ϕs( j)(x) =

{
f (x), if ¬[Φ j (x) ≤ b(x)]
ϕ j (x)+ 1, if Φ j (x) ≤ b(x).

By the fixed point theorem (cf., e.g., Smith [99]) there is a number i such that ϕs(i) = ϕi . Suppose there is an x such
that Φi (x) ≤ b(x). By construction ϕi (x) = ϕs(i)(x) = ϕi (x) + 1, a contradiction. So, this case cannot happen and
we get ϕi = ϕs(i) = f . This proves the claim.

Consequently, U(ϕ,Φ) /∈ NUM.
In order to show that Usd /∈ NUM we first prove thatR /∈ NUM. Suppose the converse, i.e., there is a numbering

ψ ∈ R2 such that R ⊆ Rψ . We define a function f by setting f (x) = ψx (x) + 1 for all x ∈ N. Since ψ ∈ R2 we
obtain f ∈ R. Hence, there should be a ψ-program for f , say j , i.e., ψ j = f . But ψ j ( j) = f ( j) = ψ j ( j) + 1, a
contradiction. So we have R /∈ NUM.

Now the proof of Usd /∈ NUM is obtained by the following claim.

Claim 2. For every f ∈ R there is an i ∈ N such that ϕi (0) = i and ϕi (x + 1) = f (x) for all x ∈ N.

Let f ∈ R be any function and let s ∈ R be chosen such that for all j ∈ N

ϕs( j)(x) =

{
j, if x = 0
f (x − 1), if x > 0.

Again, by the fixed point theorem there is a number i such that ϕs(i) = ϕi . By construction, ϕi (0) = i and
ϕi (x + 1) = f (x) for all x ∈ N. This proves Claim 2.

Now, if Usd ∈ NUM, then, by erasing the first argument, one can directly obtain a numbering ψ such that
R = Rψ , a contradiction to R /∈ NUM. �

The following classes are due to Blum and Blum [21]. Let (ϕ,Φ) be any complexity measure, and let τ ∈ R be
such that for all i ∈ N

ϕτ(i)(x) =

1, if Φi (x)↓ and Φx (x) ≤ Φi (x),
0, if Φi (x)↓ and ¬[Φx (x) ≤ Φi (x)],
↑ , otherwise.

Now we set

Umahp = {ϕτ(i) | i ∈ N and Φi ∈ Rmon}

(the class of monotone approximations to the halting problem) and

Uahp = {ϕτ(i) | i ∈ N and Φi ∈ R}

(the class of approximations to the halting problem).
Note that Umahp, Uahp /∈ NUM. For a proof, we refer the reader to Stephan and Zeugmann [105].
Whenever appropriate, we shall use these function classes for illustration of the learning models defined below, by

analyzing whether or not the corresponding learning problem is solvable.
Next, we exemplify the definition of a learning model and characterize the collection of all function classes U for

which the learning problem is solvable.

3.1. The learning types R- T OTALarb and R- T OTAL

Let us start with a list of desiderata. First, we do not make any assumption concerning the order in which examples
are presented. Second, our strategy should be defined on all inputs, i.e., we require S ∈ R. This may seem convenient,
since it may be hard to know which inputs to the strategy may occur. Third, every hypothesis should describe a
recursive function. Again, this looks natural, since any hypothesis not describing a recursive function cannot be
correct. Thus allowing a strategy to output hypotheses not describing recursive functions may be a source of potential
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errors which we avoid by our requirement. Moreover, this requirement is also nicely in line with Popper’s [95]
refutability principle requiring that we should be able to refute every incorrect hypothesis.

Definition 1 (Wiehagen [111]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be R-totally arb-learnable with
respect to ψ if there is a strategy S ∈ R such that

(1) ψS(n) ∈ R for all n ∈ N,
(2) for all f ∈ U and every X ∈ Π (N), there is a j ∈ N such that ψ j = f , and (S( f X,n))n∈N converges to j .

If U is R-totally arb-learnable with respect to ψ by a strategy S, we write U ∈ R- T OTALarb
ψ (S). Moreover, let

R- T OTALarb
ψ = {U | U is R-totally arb-learnable w.r.t. ψ}, and let R- T OTALarb

=
⋃
ψ∈P2 R- T OTALarb

ψ .

Some remarks are mandatory here. Let us start with the semantics of the hypotheses produced by a strategy S.
As described above, we always interpret the number S( f X,n) as a ψ-number. This convention is adopted to all the
definitions below. The “arb” in arb-learnable points to the fact that we require learnability with respect to any arbitrary
order of the input. Moreover, according to the definition of convergence, only finitely many data points of the graph
of a function f were available to the strategy S up to the unknown point of convergence. Therefore, some form of
learning must have taken place. Thus, the use of the term “learn” in the above definition is indeed justified.

Note thatR- T OTALarb is sometimes also called PEX, where the EX stands for explain and P refers to Popperian
strategies, i.e., strategies that can directly use Popper’s [95] refutability principle (cf. [30]). But we think this
interpretation of Popper’s [95] refutability principle is too narrow. A more detailed discussion is provided throughout
this survey.

In order to study the impact of the requirement to learn with respect to any order of the input, next we relax
Definition 1 by demanding only learnability from input presented in natural order.

Definition 2 (Wiehagen [111]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be R-totally learnable with
respect to ψ if there is a strategy S ∈ R such that

(1) ψS(n) ∈ R for all n ∈ N,
(2) for each f ∈ U there is a j ∈ N such that ψ j = f , and (S( f n))n∈N converges to j .

R- T OTALψ (S), R- T OTALψ , and R- T OTAL are defined analogously to the above.

It is technically advantageous to start with the following result showing that, as far asR-total learning is concerned,
the order in which the graph of the function is fed to the learning strategy does not matter.

Theorem 1. R- T OTAL = R- T OTALarb

Proof. Obviously, if we can learn from arbitrary input then we can learn from input presented in natural order, i.e.,
R- T OTALarb

⊆ R- T OTAL.
For the opposite direction, let U ∈ R- T OTAL. Hence there is a numbering ψ ∈ P2 and a strategy S ∈ R such

that U ∈ R- T OTALψ (S). The desired strategy S′ is obtained from S by adding a preprocessing. If S′ receives an
encoded list f X,n it looks for the largest number m such that (0, f (0)), . . . , (m, f (m)) are all present in f X,n . If this
number m exists, then S′ simulates S on input f m and outputs the hypothesis computed. Otherwise, i.e., if (0, f (0))
does not occur in f X,n , then S′ simply returns a fixed program of the constant zero function as an initial auxiliary
hypothesis.

Now it is easy to see that U ∈ R- T OTALarb
ψ (S′). We omit the details. �

The following lemma is both of technical and of epistemological importance. It actually states that, if we can R-
totally learn with respect to some numbering, then we can also learn with respect to any Gödel numbering. As we
shall see later, its proof directly transforms to almost every learning type considered in this survey.

Lemma 2. Let U ⊆ R, let ψ ∈ P2 be any numbering and let S ∈ R be such that U ∈ R- T OTALψ (S).
Furthermore, let ϕ ∈ P2 be any Gödel numbering. Then there is a strategy Ŝ ∈ R such that U ∈ R- T OTALϕ(Ŝ).

Proof. By the definition of a Gödel numbering there is a compiler function c ∈ R such that ψi = ϕc(i) for all i ∈ N.
Thus, we can define Ŝ( f n) = c(S( f n)) and the lemma follows. �
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Expressed differently, we have just shown that R- T OTAL = R- T OTALϕ for every Gödel numbering ϕ. But
it is often advantageous to use special numberings having special properties facilitating learning. A first example is
provided by Theorem 2 below. Additionally, this theorem also characterizes the classes in R- T OTAL.

Theorem 2. R- T OTAL = NUM

Proof. The proof is done by showing two claims.

Claim 1. R- T OTAL ⊆ NUM

Let U ∈ R- T OTAL. Then there is a strategy S ∈ R and a numbering ψ ∈ P2 such that U ∈ R- T OTALψ (S).
We have to construct a numbering τ ∈ R2 such that U ⊆ Rτ .

For all i, x ∈ N we define τ(i, x) = ψS(i)(x). By Condition (1) of Definition 2 we know that ψS(i) ∈ R. Thus, we
directly obtain τ ∈ R2. It remains to show that U ⊆ Rτ . Let f ∈ U . By Condition (2) of Definition 2 there exists a
j such that ψ j = f and (S( f n))n∈N converges to j . Let k be minimal such that S( f n) = j for all n ≥ k. Thus, for
i = f k we obtain

τi = ψS(i) = ψS( f k ) = ψ j = f,

and consequently, U ⊆ Rτ . This proves Claim 1.

Claim 2. NUM ⊆ R- T OTAL

Let U ∈ NUM. Hence there is a numbering ψ ∈ R2 such that U ⊆ Rψ . Essentially, Claim 2 is proved by using
Gold’s [53] famous identification by enumeration strategy. The idea behind the identification by enumeration strategy
to learn a function f ∈ U is to search for the least index j in the enumeration ψ0, ψ1, ψ2, . . . such that ψ j = f . So
on input f n one looks for the least i such that ψn

i = f n .
The only difficulty we have to overcome is to ensure that S satisfies Condition (1) of Definition 2 for all f ∈ R,

that is, also in case f ∈ R \ U . Then there may be no program i at all such that ψn
i = f n .

Therefore, using a fixed enumeration of N∗ (cf. Rogers [97]) we define a numbering χ as follows. Let α be the i th
tuple of N∗ enumerated. We set χi = α0∞. Thus, χ ∈ R2 and U0 = Rχ .

Next, we define a numbering τ ∈ R2 by setting τ2i = ψi and τ2i+1 = χi for all i ∈ N. Now, taking into account
that [U0] = [R] = N∗, we can directly use the identification by enumeration strategy by using the numbering τ to
R-totally learn the class U . This proves Claim 2.

Claim 1 and Claim 2 together yield the theorem. �

On the one hand, NUM is a rich collection of function classes. As a matter of fact, the class of all primitive
recursive functions is in NUM. Moreover, the characterization obtained by Theorem 2 directly allows a very strong
corollary, which first requires the following simple definition.

Definition 3. Let LT be any learning type and let (Si )i∈N be a recursive enumeration of strategies fulfilling the
requirements of the learning type LT . We call LT closed under recursively enumerable union if there is a strategy S
fulfilling the requirements of LT such that

⋃
i∈N LT (Si ) ⊆ LT (S).

Corollary 3. R- T OTAL is closed under recursively enumerable union.

On the other hand, none of the classes U(ϕ,Φ), Usd, Umahp, and Uahp is in NUM as pointed out above.
So, we have to explore some ways to enlarge the learning capabilities of R- T OTAL. Before doing this, we also

characterize R- T OTAL in terms of complexity, since it may help to gain a better understanding of the properties
making a function class learnable or non-learnable, respectively.

The idea behind the following characterization can be explained easily. Suppose we want to learn a class U with
respect to any fixed Gödel numbering ϕ. Then a strategy may try to find a program i such that ϕn

i = f n . Though this
search will succeed, the strategy may face serious difficulties to converge. To see this, suppose on input f n a program
i as described has been found. Next, the strategy sees also f (n + 1). Now it may try to compute ϕi (n + 1) and, in
parallel to find again an index, say j , such that ϕn+1

j = f n+1. Once j is found and the computation of ϕi (n + 1)
has not stopped yet, the strategy must make a decision. Either it tries to compute ϕi (n + 1) further or it switches its
hypothesis to j . The latter would be a bad idea if ϕ j 6= f but ϕi = f . On the other hand, it would be a good idea if
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ϕi (n + 1)↑ . Since the halting problem is undecidable, without any additional information, the strategy cannot decide
which case actually occurs. Thus, it is intuitively clear that information concerning the computational complexity of
the functions to be learned can only help. We illustrate this by reproving Barzdin’s and Freivalds’ [16] Extrapolation
Theorem here in our setting.

Let t ∈ R, and let (ϕ,Φ) be any fixed complexity measure. Following McCreight and Meyer [83], we define the
complexity class

Ct = {ϕi | ∀
∞n [Φi (n) ≤ t (n)]} ∩R.

For further information concerning these complexity classes, we refer the interested reader to e.g., [24,33,75,117].

Theorem 4 (Barzdin and Freivalds [16]). For every class U ⊆ R we have: U ∈ R- T OTAL if and only if there is a
function t ∈ R such that U ⊆ Ct .

Proof. Necessity. Let U ∈ R- T OTAL. Then, by Theorem 2, we know that there is a numbering ψ ∈ R2

such that U ⊆ Rψ . Now let c ∈ R be any fixed compiler such that ψi = ϕc(i) for all i ∈ N. We set
t (n) = max{Φc(i)(n) | i ≤ n}. Clearly, U ⊆ Ct .

Sufficiency. Suppose U ⊆ Ct . By Theorem 2, it suffices to show that Ct ∈ NUM. For proving this, we use the
observation that f ∈ Ct if and only if there are j, n, k ∈ N such that f = ϕ j , Φ j (x) ≤ k for all x ≤ n and
Φ j (x) ≤ t (x) for all x > n. Now let c3 be the canonical enumeration of N × N × N. For c3(i) = ( j, n, k) and x ∈ N
we define

ψ(i, x) =

ϕ j (x), if x ≤ n and Φ j (x) ≤ k
ϕ j (x), if x > n and Φ j (x) ≤ t (x)
0, otherwise.

By construction, we clearly have ψ ∈ R2. Now let f ∈ Ct . Using the observation made above, choose i such that
c3(i) = ( j, n, k), where f = ϕ j , Φ j (x) ≤ k for all x ≤ n and Φ j (x) ≤ t (x) for all x > n. Hence, ψi = ϕ j = f and
thus f ∈ Rψ . Consequently, Ct ∈ NUM. �

There is another nice characterization of R- T OTAL in terms of a different learning model which we would like
to include. First we define the learning model which was introduced by Barzdin [17].

Definition 4 (Barzdin [17]). A class U ⊆ R of functions is said to be predictable if there exists a strategy S ∈ R
such that S( f n) = f (n + 1) for all f ∈ U and all but finitely many n ∈ N.

The resulting learning type is denoted by NV . Here, NV stands for “next-value.” So, in NV learning we have to
correctly predict the next value of the target function for almost all n.

Theorem 5 (Barzdin [17]). NV = R- T OTAL

We do not prove this theorem here but refer the interested reader to Case and Smith [30] (cf. Theorem 2.19).
But we would like to discuss another interesting aspect. If the value predicted by an NV learner is wrong, i.e., if

S( f n) 6= f (n + 1), then we say that a prediction error occurs. Analogously, if an R- T OTAL learner changes its
hypothesis, i.e., if S( f n) 6= S( f n+1), then S performs a mind change.

Now, when using the identification by enumeration strategy, in order to learn the nth function enumerated in the
numbering ψ , one needs n mind changes in the worst case and this approach also leads to n prediction errors in the
worst case. Therefore, it is only natural to ask whether or not we can do any better. In fact, an exponential speed-
up is possible. For the sake of simplicity, we present the solution here only for classes of recursive predicates, i.e.,
U ⊆ R{0,1} and for prediction errors.

Theorem 6 (Barzdin and Freivalds [19]). Let ψ ∈ R2 such that ψi ∈ R{0,1} for all i ∈ N. Then there exists an NV
learner FP for U making at most O(log n) prediction errors for every function f ∈ U , where n is the least number j
such that ψ j = f .

Proof. Let f ∈ U be the target function. The desired NV learner works in stages. In each Stage i it considers the
subset of the block of functions Bi = {ψk | 22i

+ 1 ≤ k ≤ 22i+1
} that coincide with all the data seen so far. Then it
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makes its prediction in accordance with the majority of the functions still in the block. After having read the true value,
it eliminates the functions not coinciding with the new value from block Bi . If all functions are eventually eliminated,
Stage i is left and Stage i + 1 is started. Clearly, if the target function f belongs to block Bi , Stage i is never left.
Before analyzing this prediction algorithm we give a formal description of it. In order to make it better readable, we
also add the arguments to the data presentation.

Algorithm FP: “On successive input 〈0, f (0), 1, f (1), 2, f (2), . . . 〉 do the following: Execute Stage 0:
Stage 0: Set V0 = {0, 1, 2, 3, 4}, x0 = 0.
While V0 6= ∅ execute (A) else goto Stage 1.

(A) Read x0. Compute V 0
0 = {k | k ∈ V0, ψk(x0) = 0}, and V 1

0 = {k | k ∈ V0, ψk(x0) = 1}.
If |V 0

0 | ≥ |V 1
0 | then predict 0; otherwise predict 1.

Read f (x0), and increment x0. If f (x0) = 0 set V0 = V 0
0 ; otherwise set V0 = V 1

0 .

Stage i, i ≥ 1: Set xi = xi−1, and compute Vi = {k ∈ N | 22i
+ 1 ≤ k ≤ 22i+1

, ψk(x) = f (x) for all
0 ≤ x ≤ xi }.

(* Vi is the set of those indices of functions in block i that coincide with all the data seen so far. *)
While Vi 6= ∅ execute (B) else goto Stage i + 1.

(B) Read xi . Compute V 0
i = {k | k ∈ Vi , ψk(xi ) = 0}, and V 1

i = {k | k ∈ Vi , ψk(xi ) = 1}.
If |V 0

i | ≥ |V 1
i | then predict 0; otherwise predict 1.

Read f (xi ), and increment xi . If f (xi ) = 0 set Vi = V 0
i ; otherwise set Vi = V 1

i .

We start our analysis by asking how many stages the algorithm FP has to execute. Let n be the least number j such
that ψ j = f . Furthermore, let i be the least number m such that n ∈ Vm . Thus, i = dlog log ne − 1. The total number
of prediction mistakes is the sum of all the prediction mistakes made on each of the blocks V0, V1, . . . , Vi . The number
of prediction mistakes made on V0 is 3. For every 1 ≤ z < i the number of prediction mistakes made on Vz will be
at most dlog(|Vz |)e. To see this, remember that each prediction is made in accordance with the majority of computed
values for all the remaining indices in Vz . Thus, whenever a prediction error occurs, at least half of the indices in Vz is
deleted. Since all indices are eventually deleted, we arrive at the stated bound. Analogously, the number of prediction
mistakes made on Vi is at most dlog |Vi |e − 1. Obviously, |Vz | = 22z

(22z
− 1), and thus dlog |Vz |e ≤ 2z+1.

Therefore, the maximum number of prediction mistakes is upper bounded by

21
+ · · · + 2i+1

= 2i+2
− 1

≤ 2dlog log ne−1+2
− 1

≤ 4 · 2log log n

= 4 log n

= O(log n). �

The algorithmFP invented by Barzdin and Freivalds is nowadays usually referred to as the halving algorithm. This
algorithm as well as different generalizations of it have found many applications in machine learning (cf. e.g., [26,54,
59,82,86]). The halving algorithm can be modified to R-totally learn every class of recursive predicates from NUM
with at most O(log n) mind changes. However, in order to achieve this result, the resulting strategy must use a Gödel
numbering as its hypothesis space and not the numbering ψ . Furthermore, all these results can be generalized to learn
or to predict arbitrary classes fromNUM, thereby still achieving the O(log n) bound. For a detailed presentation and
further information, we refer the reader to Freivalds, Bārzdiņš and Podnieks [41].

The results obtained so far provide some insight concerning the problem how to extend the learning capabilities of
R- T OTAL. First, we could restrict our demands to the strategy to hold only on initial segments from [U] instead of
from [R]. Second we could modify our demands to the intermediate hypotheses. The demand to output only programs
computing recursive functions seems rather strong.

Third, we could have a closer look at the identification by enumeration strategy. The most obvious point here is
that we do not need the requirement ψi ∈ R. For example, if the predicate “ψi (x) = y” was uniformly recursive for
all i, x, y ∈ N it would still work. But as we shall see, there is more we can do.
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Fourth, looking at the definition of the complexity class Ct , we see that the bound t does not depend on the functions
f to be learned. So, some modifications are suggesting themselves.

We continue this section by trying the first approach. The other modifications are discussed later. So, let us relax
the definition of R- T OTAL as described above.

Definition 5 (Freivalds and Barzdin [39]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be totally learnable
with respect to ψ if there is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S( f n) is defined and ψS( f n) ∈ R,
(2) there is a j ∈ N such that ψ j = f , and (S( f n))n∈N converges to j .

T OTALψ (S), T OTALψ and T OTAL are defined analogously as above.

Note that any strategy that learns in the sense of T OTAL can directly use Popper’s [95] refutability principle. But
obviously, Usd ∈ T OTAL and thus total learning is more powerful than R-total inference.

Theorem 7. R- T OTAL ⊂ T OTAL

But the price paid is rather high, since, in contrast to Corollary 3, now we can easily prove that T OTAL is not
closed under union.

Theorem 8. U0 ∪ Usd /∈ T OTAL

Proof. Suppose the converse. Then there must exist a strategy S such that U0 ∪Usd ∈ T OTAL(S). Since [U0] = [R],
we can conclude S ∈ R and ϕS(i) ∈ R for all i ∈ N. Hence, S would witness U0 ∪ Usd ∈ R- T OTAL(S). So, by
Theorem 2, we obtain U0 ∪ Usd ∈ NUM, a contradiction to Lemma 1. �

T OTAL has another interesting property. Modifying Definition 5 in the opposite way we have obtained
R- T OTAL from R- T OTALarb, we get the learning type T OTALarb. Then, using the same ideas as in the proof
of Theorem 1, one can easily show the following theorem first announced in Jantke and Beick [66].

Theorem 9. T OTAL = T OTALarb

As we have seen above, the characterizations of a learning type in terms of complexity or in terms of computable
numberings help to gain a better understanding of the problem how to design learning algorithms. As far as
R- T OTAL was concerned, the answer obtained was very satisfying, since it showed that every class U ∈

R- T OTAL can be identified by the identification by enumeration strategy.
So, let us ask whether or not we can also characterize T OTAL in terms of complexity or in terms of computable

numberings. Hopefully, we can obtain a deeper insight into the question how learning algorithms may be designed
for classes that are totally learnable. Interestingly, while characterizing T OTAL in terms of complexity remains an
open problem, a characterization of T OTAL in terms of computable numberings was obtained by Wiehagen [111].
This characterization theorem shows that every totally learnable class can be learned in a uniform manner, which, in
addition, has a strong resemblance to identification by enumeration. Therefore we continue with this characterization.

Theorem 10 (Wiehagen [111]). Let U ⊆ R. Then we have: U ∈ T OTAL if and only if there exists a numbering
ψ ∈ P2 such that

(1) U ⊆ Pψ ,
(2) There is a function g ∈ R such that ψi =g(i) f implies ψi ∈ R for every function f ∈ U and every program i.

Proof. Necessity. Let U ∈ T OTAL and let ϕ ∈ Göd. By Lemma 2 we can assume that there is a strategy S ∈ P
such that U ∈ T OTALϕ(S). Let d ∈ R be chosen such that d enumerates dom(S) without repetitions. Furthermore,
for i ∈ N let n be the length of the tuple enumerated by d(i). We set ψ(i, x) = ϕS(d(i))(x) and g(i) = n. Definition 5
directly implies that Conditions (1) and (2) are satisfied.

Sufficiency. First we describe the basic idea for a strategy. Suppose f ∈ U and we have already found a program
i such that ψi =g(i) f . Then Condition (2) allows us to check whether or not f (x) = ψi (x) for all x provided the
strategy knows f (x). So, if f = ψi , the strategy will converge. Otherwise it will find a witness proving f 6= ψi
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and it can restart its search. So, the main problem is to verify ψi =g(i) f . For overcoming it, let c ∈ R be such that
ψi = ϕc(i) for all i ∈ N. Now the idea is to use the input length to provide a bound on Φc(i)(x).

The desired strategy S is formally defined as follows. Let z be any fixed number such that ψz ∈ R.

S( f n) = “Compute M = {i | i ≤ n, g(i) ≤ n, Φc(i)(x) ≤ n and ψi (x) = f (x) for all x ≤ g(i)}. Execute
Instruction (I).

(I) If M = ∅ then output z.
If M 6= ∅ then let i = min M and compute ψi (x) for all x such that g(i) < x ≤ n. If one of these values
is not defined, then S( f n) is not defined, either.
Otherwise check whether or not ψi =n f . If this is the case, output i .
In case ψi 6=n f execute (I) for M := M \ {i}.”

It remains to show that U ∈ T OTALψ (S). Let f ∈ U . If M = ∅ then we have ψS( f n) = ψz ∈ R. If M 6= ∅, then the
definition of M ensures that we already know ψi =g(i) f . Hence by Condition (2) we also have ψi ∈ R. Thus, S( f n)

is defined and ψS( f n) ∈ R for all n ∈ N. Finally, the definition of S directly implies that (S( f n))n∈N converges to the
least number i with ψi = f . �

Having already shown that total learning is more powerful than R-total identification, it is only natural to ask
whether or not we can also totally learn the class U(ϕ,Φ). Answering this question additionally sheds light to
the strength of the demand to exclusively output hypotheses describing recursive functions. The negative answer
provided below shows that this may be a too strong demand. Therefore, we finish this section by showing that
U(ϕ,Φ) /∈ T OTAL provided the complexity measure (ϕ,Φ) fulfills a certain intuitive property.

A complexity measure (ϕ,Φ) is said to satisfy Property ext provided for all i, n ∈ N such that Φi (0) ↓

, . . . ,Φi (n)↓ there is a Φz ∈ R such that Φi =n Φz .
Note that the following proof uses an idea from Case and Smith [30].

Theorem 11. U(ϕ,Φ) /∈ T OTAL for all complexity measures (ϕ,Φ) fulfilling Property ext.

Proof. Let r ∈ R be chosen such that Φi = ϕr(i) for all i ∈ N. Furthermore, by the padding lemma r can be chosen
in a way such that r is strongly monotonously increasing, i.e., r(i) < r(i + 1) for all i ∈ N (cf. Smith [99]). Hence,
Val(r) is recursive. Next, choose s ∈ R such that

ϕs( j)(0) =

{
0, if there is an i such that r(i) = j
↑ , otherwise.

In order to define ϕs( j) for all j and all x > 0, suppose there is a strategy S ∈ P such that U(ϕ,Φ) ∈ T OTALϕ(S).
For all x ≥ 0 let

ϕs( j)(x + 1) =


0, if ϕ j (y)↓ , for all y ≤ x and S(ϕx

j )↓ and
ϕkx (x + 1)↓< ϕ j (x + 1), where kx = S(ϕx

j )

↑ , otherwise.

By the fixed point theorem (cf. Smith [99]) there is a number i such that ϕs(r(i)) = ϕi . We continue to show inductively
that ϕi ∈ R and that S fails to totally learn Φi .

For the induction base, by construction, ϕs(r(i))(0) = 0, since j = r(i). Hence, ϕi (0) = 0 and thus Φi (0) =

ϕr(i)(0)↓ .
Next, consider the definition of ϕi (1).

ϕi (1) = ϕs(r(i))(1) =

0, if Φi (0)↓ and S(Φ0
i )↓

and ϕk0(1)↓< Φi (1), where k0 = S(Φ0
i )

↑ , otherwise.

Since Φi (0)↓ we know by Property ext that there is a Φz ∈ R such that Φi (0) = Φz(0). Consequently, S(Φ0
i )↓ and

ϕk0 ∈ R, where k0 = S(Φ0
i ). Thus, by Property (2) of the definition of complexity measure, one can effectively decide

whether or not ϕk0(1) < Φi (1). Clearly, if ϕk0(1) < Φi (1), then ϕi (1) = 0 and hence defined. On the other hand, if
ϕk0(1) ≥ Φi (1) then Φi (1) ↓ , too, but, by construction, ϕi (1) ↑ , a contradiction to Property (1) of the definition of
complexity measure. Hence ϕi (1) is defined.



T. Zeugmann, S. Zilles / Theoretical Computer Science 397 (2008) 4–56 15

The induction step is done analogously. That is,

ϕi (x + 1) = ϕs(r(i))(x + 1) =

0, if Φi (y)↓ , for all y ≤ x and S(Φx
i )↓ and

ϕkx (x + 1)↓< Φi (x + 1), where kx = S(Φx
i )

↑ , otherwise.

By the induction hypothesis, Φi (y) ↓ for all y ≤ x and thus, by Property ext, there is a Φz ∈ R such that
Φi =x Φz and therefore S(Φx

i ) ↓ . Let kx = S(Φx
i ), then ϕkx ∈ R and one can effectively decide whether or not

ϕkx (x + 1) < Φi (x + 1). If it is, ϕi (x + 1) = 0 and thus Φi (x + 1)↓ . If it is not, we have ϕkx (x + 1) ≥ Φi (x + 1)
but ϕi (x + 1)↑ , a contradiction to Property (1) of the definition of complexity measure. Hence, ϕi (x + 1) is defined.

Therefore, we obtain ϕi ∈ R and hence Φi ∈ R, too. Consequently, Φi ∈ U(ϕ,Φ). By supposition, S has to learn
Φi , i.e., the sequence (kx )x∈N has to converge, say to k, and k must be a ϕ-program for Φi . But by construction we
have ϕk(x + 1) < Φi (x + 1) for all but finitely many x ∈ N, a contradiction. �

Now we are ready to explore the other ways mentioned above to enlarge the learning capabilities of R- T OTAL.
This brings us directly to another subject Rolf Wiehagen has been interested in for many years, i.e., learning and
consistency.

4. Learning and consistency — part I

Looking back at the proof of Theorem 2, we see that an R-total strategy is always completely and correctly
reflecting the data seen so far. Such a hypothesis is called consistent. Hypotheses not behaving thus are said
to be inconsistent. Consequently, if a strategy has already seen the examples (x0, f (x0)), . . . , (xn, f (xn)) and is
hypothesizing the function g and if g is inconsistent, then there must be a k ≤ n such that g(xk) 6= f (xk). Note
that there are two possible reasons for g to differ from f on argument xk . Either g(xk) ↑ or g(xk) ↓ but does not
equal f (xk). In any way, an inconsistent hypothesis is not only wrong but it is wrong on an argument for which the
learning strategy does already know the correct value. Thus, one may be tempted to completely exclude strategies
producing inconsistent hypotheses. So, let us follow this temptation and let us see what we get. We start with the
strongest version of consistent learning which was already considered in [21]. Note that Blum and Blum [21] called
this form of consistency the overkill property.

Definition 6 (Blum and Blum [21]). Let U ⊆ R and let ψ ∈ P2. U ∈ T - CONSarb
ψ if there is a strategy S ∈ R such

that

(1) for all f ∈ U and every X ∈ Π (N), there is a j ∈ N such that ψ j = f , and (S( f X,n))n∈N converges to j ,
(2) ψS( f X,n)(xm) = f (xm) for every permutation X ∈ Π (N), f ∈ R, n ∈ N, and m ≤ n.

T - CONSarb
ψ (S) as well as T - CONSarb are defined in analogy to the above.

That means a T - CONSarb strategy is required to return consistent hypotheses even if the input does not belong to
any function in the target class U .

Our next goal is to characterize T - CONSarb in terms of complexity and in terms of computable numberings. To
achieve this goal, first we recall McCreight and Meyer’s [83] definition of an honesty complexity class. Let h ∈ R2;
then

Ch = {ϕi | ∀
∞n [Φi (n) ≤ h(n, ϕi (n))]} ∩R

is called honesty complexity class. So, honesty means that every function f ∈ Ch does possess a ϕ-program i
computing it, i.e., ϕi = f and the complexity of this ϕ-program can be bounded by using the function h ∈ R2

and the function values f (n).
Second, we need a new family of numberings.

Definition 7 (Blum [22]). A numbering ψ ∈ P2 is said to be measurable if the predicate “ψi (x) = y” is uniformly
recursive in i, x, y.
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The next theorem completely characterizes T - CONSarb in terms of complexity and of computable numberings.
The proof presented below is a combination of results from Blum and Blum [21] (Assertion (1) and (2)) and from
McCreight and Meyer [83] who showed the equivalence of Assertion (2) and (3).

Theorem 12 (Blum and Blum [21], McCreight and Meyer [83]). Let (ϕ,Φ) be any complexity measure and let
U ⊆ R. Then the following conditions are equivalent.

(1) U ∈ T - CONSarb.
(2) There is a function h ∈ R2 such that U ⊆ Ch .
(3) There is a measurable numbering ψ ∈ P2 such that U ⊆ Pψ .

Proof. The proof is done by showing three claims.

Claim 1. (1) implies (2).

Let U ∈ T - CONSarb
ϕ (S) be witnessed by S ∈ R and ϕ ∈ Göd. Furthermore, let c2 : N × N → N be the standard

Cantor coding of all pairs of natural numbers. We define an order ≺ on N × N. Let (x1, y1), (x2, y2) ∈ N × N. Then

(x1, y1) ≺ (x2, y2) if and only if c2(x1, y1) < c2(x2, y2).

Clearly, ≺ is computable.
Furthermore, for (x, y) we denote by SEQ(x, y) the set of all finite sequences σ = ((x0, y0), . . . , (xn, yn), (x, y))

for which (x0, y0) ≺ · · · ≺ (xn, yn) ≺ (x, y). Note that for every pair (x, y) the set SEQ(x, y) is finite and computable.
Since S is consistent in the sense of T - CONSarb we additionally have

ϕS(〈σ 〉)(x) = y for all σ ∈ SEQ(x, y). (1)

Now we are ready to define the desired function h. For all x, y ∈ N let

h(x, y) = max{ΦS(〈σ 〉)(x) | σ ∈ SEQ(x, y)}.

Since for every pair (x, y) the set SEQ(x, y) is finite and computable, by (1) we directly get h ∈ R2.
Now let f ∈ U . We have to show f ∈ Ch . Note that ≺ induces precisely one enumeration

(x0, f (x0)), (x1, f (x1)), . . . of the graph of f . By the definition of T - CONSarb the strategy S has to converge
to a number j with ϕ j = f when successively fed this enumeration. Thus, for all sufficiently large n we have
S(〈(x0, f (x0)), . . . , (xn, f (xn))〉) = j . By the definition of h we can directly conclude Φ j (xn) ≤ h(xn, ϕ j (xn)) for
all sufficiently large n. Consequently, f ∈ Ch , and Claim 1 is shown.

Claim 2. (2) implies (3).

Let h ∈ R2 and let f ∈ Ch . Then there exists a triple ( j, n, k) such that ϕ j = f , Φ j (x) ≤ k for all x ≤ n
and Φ j (x) ≤ h(x, ϕ j (x)) for all x > n. Using ideas similar to those applied in the proof of the sufficiency part of
Theorem 4 we can define the desired numbering ψ . Again, let c3 be the canonical enumeration of N × N × N. For
c3(i) = ( j, n, k) and x ∈ N we define

ψ(i, x) =

y, if [x ≤ n → Φ j (x) ≤ k and ϕ j (x) = y]

or [x > n → Φ j (x) ≤ h(x, y) and ϕ j (x) = y]

↑ , otherwise.

Obviously, we have ψ ∈ P2 and by the observation made above it is easy to see that U ⊆ Pψ . It remains to show that
ψ is measurable. So, we have to provide an algorithm uniformly deciding on input i, x, y whether or not ψ(i, x) = y.
The desired algorithm is displayed in Fig. 1. Note that rounded rectangles denote tests. This proves Claim 2.

Claim 3. (3) implies (1).

Let U ⊆ R and let ψ ∈ P2 be a measurable numbering such that U ⊆ Rψ . Moreover, as in the proof of Theorem 2
we chose χ ∈ R2 such that U0 = Rχ . Again, we set τ2i = ψi and τ2i+1 = χi for all i ∈ N. Obviously, τ ∈ P2, τ is
measurable, and U ⊆ Rτ . Now let X ∈ Π (N) and n ∈ N. We define

S( f X,n) = “Search the least i such that τi (xm) = f (xm) for all 0 ≤ m ≤ n. If such an i has been found, output i .”
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Fig. 1. An algorithm uniformly deciding on input i, x, y whether or not ψ(i, x) = y; here ( j, n, k) = c3(i).

Since τ is measurable, it is easy to see that S ∈ R. Moreover, if f ∈ U , then the sequence (S( f X,n))n∈N has to
converge, since the search can never go beyond the least τ -program j with τ j = f . When converging, say to j , the
strategy yields τ j = f . Thus, U ∈ T - CONSarb

τ (S).
This proves Claim 3, and hence the theorem is shown. �

Having Theorem 12, we can easily show that, in general, T - CONSarb extends the learning capabilities of
R- T OTAL. However, when restricted to classes of recursive predicates, both T - CONSarb and R- T OTAL are of
the same learning power. Furthermore, we get closure under recursively enumerable union for T - CONSarb, nicely
contrasting Theorem 8. The following corollary summarizes these results.

Corollary 13 (Blum and Blum [21]). (1) R- T OTAL ⊂ T - CONSarb and
(2) R- T OTAL ∩ ℘(R{0,1}) = T - CONSarb

∩ ℘(R{0,1}).

(3) T - CONSarb is closed under recursively enumerable union.

Proof. For the first part, by Lemma 1 and Theorem 2 we have U(ϕ,Φ) /∈ R- T OTAL. On the other hand,
for every complexity measure (ϕ,Φ), Φ ∈ P2 is measurable. Hence U(ϕ,Φ) ∈ T - CONSarb. Consequently,
T - CONSarb

\R- T OTAL 6= ∅. Furthermore, R- T OTAL ⊆ T - CONSarb by Theorem 2 and Theorem 12.
For the second part, if U ∈ T - CONSarb then there is a function h ∈ R2 such that U ⊆ Ch . But since U ⊆ R{0,1},

we can define t (x) = h(x, 0) + h(x, 1) for all x ∈ N. Hence, we get U ⊆ Ct , and thus by Theorem 2 we know that
U ∈ NUM = R- T OTAL.

Assertion (3) is proved by using Theorem 12. Let (Si )i∈N be a recursive enumeration of strategies fulfilling the
requirements of T - CONSarb. Without loss of generality we can assume that all strategies Si learn with respect to
some fixed Gödel numbering ϕ. As the proof of Claim 1 in the demonstration of Theorem 12 shows, for every strategy
Si we can effectively obtain a function hi ∈ R2 such that T - CONSarb

ϕ (Si ) ⊆ ℘(Chi ). We define

h(x, y) = max{hi (x, y) | i ≤ x} for all x, y ∈ N.

Clearly, h ∈ R2 and by construction
⋃

i∈N Chi ⊆ Ch . Applying again Theorem 12 we get that there is a strategy S
such that Ch ∈ T - CONSarb

ϕ (S). Consequently,
⋃

i∈N T - CONSarb
ϕ (Si ) ⊆ T - CONSarb

ϕ (S). �

Furthermore, T OTAL and T - CONSarb both extend the learning capabilities of R- T OTAL, but in different
directions. Before showing this, we consider the variant of T - CONSarb where the strategy is only required to learn
from input presented in natural order. The resulting learning type is denoted by T - CONS (see also Definition 15 in
Section 5.1).
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Corollary 14. T OTAL # T - CONSarb

Proof. By Theorem 11 we have U(ϕ,Φ) ∈ T - CONSarb
\ T OTAL. On the other hand, Usd ∈ T OTAL. We claim

that Usd /∈ T - CONS, and thus we also have Usd /∈ T - CONSarb.
Let ϕ be any fixed Gödel numbering. Suppose there is a strategy S ∈ R such that Usd ∈ T - CONSϕ(S). By an

easy application of the fixed point theorem we can construct a function f such that f = ϕi , f (0) = i and for all
n ∈ N

f (n + 1) =

{
0, if S( f n0) 6= S( f n)

1, if S( f n0) = S( f n) and S( f n1) 6= S( f n).

Note that one of the two cases in the definition of f must happen for all n ≥ 1. Thus, we clearly have f ∈ Usd. On the
other hand, S( f n) 6= S( f n+1) for all n ∈ N a contradiction to Usd ∈ T - CONSϕ(S). Hence Usd /∈ T - CONS. �

Note that the proof of this Corollary also showed that for every T -consistent strategy S ∈ R one can effectively
construct a function f such that { f } /∈ T - CONSϕ(S).

We finish this section by mentioning that for T -consistent learning identification from arbitrarily ordered input and
learning from input presented in natural order makes a difference. Thus, the following theorem nicely contrasts with
Theorems 1 and 9. For a proof we refer the reader to Grieser [56].

Theorem 15. T - CONSarb
⊂ T - CONS

We continue by defining some more concepts of learning. This is done in the next section.

5. Defining more learning models

So far, we have started from a learning model which, at first glance looked quite natural, i.e., R- T OTALarb and
continued by looking for possibilities to enlarge its learning power. Though, conceptually, we shall follow this line of
presentation, it is technically advantageous to introduce several new concepts of learning at once in this section.

The following learning model is the one with which it all started, i.e., Gold’s famous learning in the limit model. In
this model, all requirements on the intermediate hypotheses such as being ψ-programs of recursive functions or being
consistent are dropped.

Definition 8 (Gold [52,53]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be learnable in the limit with respect
to ψ if there is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S( f n) is defined,
(2) there is a j ∈ N such that ψ j = f and the sequence (S( f n))n∈N converges to j .

If U is learnable in the limit with respect to ψ by a strategy S, we write U ∈ LIMψ (S). Let LIMψ = {U |

U is learnable in the limit w.r.t. ψ}, and let LIM =
⋃
ψ∈P2 LIMψ .

Again, some remarks are mandatory here. Note that LIMϕ = LIM for any Gödel numbering ϕ. This can be
shown by using exactly the same ideas as above (cf. Lemma 2). In the above definition LIM stands for “limit.” There
are also other notations around to denote the learning type LIM. For example, in [13–15] the notation GN is used.
Here GN stands for Gödel numbering. Case and Smith [30] coined the notation E X which stands for “explain.”

As we have seen above when studying the learning typesR- T OTAL and T OTAL, it can make a difference with
respect to the resulting learning power whether or not we require the strategy to be in R or in P (cf. Theorem 7). On
the other hand, the learning type LIM is invariant to the demand S ∈ R instead of S ∈ P . This was already shown
by Gold [52] and for the sake of completeness we include this result here.

Theorem 16 (Gold [52]). Let (ϕ,Φ) be a complexity measure. There is a function s ∈ R such that ϕs(i) ∈ R and
LIMϕ(ϕi ) ⊆ LIMϕ(ϕs(i)) for all i ∈ N.
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Proof. For every (y0, . . . , yn) ∈ N∗ we set

ϕs(i)(〈(y0, . . . , yn)〉) =


0, if Φi (〈(y0, . . . , yx )〉) > n

for all x ≤ n
ϕi (〈(y0, . . . , yx ′)〉), if x ′ is the biggest x ≤ n such

that Φi (〈(y0, . . . , yx )〉) ≤ n.

Now let f ∈ R be such that (ϕi ( f n))n∈N converges, say to j , and ϕ j = f . Then, by construction, the sequence
(ϕs(i)( f n))n∈N also converges to j , but possibly with a certain delay. Thus, ϕs(i) learns f in the limit, too. �

Hence, there exists a numbering ψ ∈ R2 such that for every U ∈ LIM there is a strategy S ∈ Rψ satisfying
U ∈ LIM(S). Clearly, it suffices to setψi = ϕs(i). This in turn implies that there is no effective procedure to construct
for every strategy ϕs(i) a function fi ∈ R such that { fi } /∈ LIM(ϕs(i)). In order to see this, suppose the converse.
Hence, the class { fi | i ∈ N} would be in NUM \LIM, a contradiction, since we obviously have NUM ⊆ LIM.

Furthermore, a straightforward modification of Definition 8 yieldsLIMarb, i.e., learning in the limit from arbitrary
input. Using the same idea as in the proof of Theorem 1 one can easily show that LIM = LIMarb.

In the following subsections we consider a variety of new learning models. These models are obtained from
identification in the limit by varying the mode of convergence, the set of admissible strategies, and the information
supply. Occasionally, we also modify the learning goal.

5.1. Varying the mode of convergence

Note that in general it is not decidable whether or not a strategy has already converged when successively fed some
graph of a function. With the next definition we consider a special case where it has to be decidable whether or not
a strategy has already learned its input function. That is, we replace the requirement that the sequence of all created
hypotheses “has to converge” by “has to converge finitely.”

Definition 9 (Gold [53], Trakhtenbrot and Barzdin [107]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be
finitely learnable with respect to ψ if there is a strategy S ∈ P such that for any function f ∈ U ,

(1) for all n ∈ N, S( f n) is defined,
(2) there is a j ∈ N such that ψ j = f and the sequence (S( f n))n∈N finitely converges to j .

If the class U is finitely learnable with respect to ψ by a strategy S, we write U ∈ FINψ (S). Let FINψ = {U |

U is finitely learnable w.r.t. ψ}, and let FIN =
⋃
ψ∈P2 FINψ .

Though the following result is not hard to prove, it provides some nice insight into the limitations of finite learning.
For stating it, we need the notion of accumulation point. Let U ⊆ R; then a function f ∈ R is said to be an
accumulation point of U if for every n ∈ N there is a function f̂ ∈ U such that f =n f̂ but f 6= f̂ .

Theorem 17 (Lindner [79]). Let U ⊆ R be any class such that U ∈ FIN . Then U cannot contain any accumulation
point.

Proof. Suppose the converse, i.e., there is a class U ∈ FIN containing an accumulation point f . Let S ∈ P such
that U ∈ FIN (S). Then there must exist an n ∈ N such that S( f n) = S( f n+1) = j . That is, the sequence
(S( f n))n∈N has finitely converged to j and ϕ j = f must hold. On the other hand, since f is an accumulation point,
there must be an f̂ ∈ U such that f =n+1 f̂ but f 6= f̂ . Clearly, by the definition of finite convergence we have
S( f̂ n) = S( f̂ n+1) = j , too, but ϕ j = f 6= f̂ . This is a contradiction to U ∈ FIN (S). �

This theorem directly yields the following corollary.

Corollary 18. R- T OTAL # FIN

Proof. FIN \ R- T OTAL 6= ∅ is witnessed by Usd. Moreover, 0∞
∈ U0 is clearly an accumulation point of U0.

Thus, by Theorems 17 and 2 we get U0 ∈ R- T OTAL \ FIN . �
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Note that Theorem 53 provides a complete answer to the question under which circumstances a class U ⊆ R is
finitely learnable.

Next, we look at another mode of convergence which goes back to Feldman [36] who called it matching in the limit
and considered it in the setting of learning languages. The difference to the mode of convergence used in Definition 8,
which is actually syntactic convergence, is to relax the requirement that the sequence of hypotheses has to converge
to a correct program by semantic convergence. Here by semantic convergence we mean that after some point all
hypotheses are correct but not necessarily identical. Nowadays, the resulting learning model is usually referred to as
behaviorally correct learning. This term was coined by Case and Smith [30]. As far as learning of recursive functions
is concerned, behaviorally correct learning was formalized by Barzdin [11,18].

Definition 10 (Barzdin [11,18]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be behaviorally correctly
learnable with respect to ψ if there is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S( f n) is defined,
(2) ψS( f n) = f for all but finitely many n ∈ N.

If U is behaviorally correctly learnable with respect to ψ by a strategy S, we write U ∈ BCψ (S). BCψ and BC are
defined analogously to the above.

Clearly, we have LIM ⊆ BC. On the other hand, even BC learning is not trivial, i.e., we have R /∈ BC. This is
a direct consequence of the next theorem which shows the even stronger result that BC is not closed under union. In
the proof below we use the convention that 0k denotes the empty string for k = 0. When we identify a function with
the sequence of its values then we mean by i0020∞ the function f expressed by i20∞, i.e., f (0) = i , f (1) = 2 and
f (x) = 0 for all x ≥ 2.

Theorem 19 (Barzdin [18]). BC is not closed under finite union.

Proof. For showing the theorem it suffices to prove that Usd ∪ U0 /∈ BC. The proof is done indirectly. Suppose the
converse, i.e., there is a strategy S ∈ P such that Usd ∪ U0 ∈ BC(S). Then we can directly conclude S ∈ R.

Now we have to fool the strategy S such that it would have to “change its mind semantically” infinitely often in
order to learn the function to be constructed. For all i ∈ N we define a function fi as follows. Set fi (0) = i for all
i ∈ N. The definition continues in stages.

Stage 1. Try to compute ϕS(〈i〉)(1), ϕS(〈i0〉)(2), . . . , ϕS(〈i0k 〉)(k + 1), . . . , until the first value k1 is found such that
ϕS(〈i0k1 〉)(k1 + 1)↓ .

Let y1 = ϕS(〈i0k1 〉)(k1 + 1). Then we set fi (x) = 0 for all 1 ≤ x ≤ k1 and fi (k1 + 1) = y1 + 1.
Goto Stage 2.

If none of the values ϕS(〈i〉)(1), ϕS(〈i0k 〉)(k + 1), k ∈ N+, is defined, then Stage 1 is not left. But in this case we are
already done, since then {i0∞

} /∈ BC(S).
For making the proof easier to access, we also include Stage 2 here.

Stage 2. Try to compute ϕS(〈i0k1 f (k1+1)〉)(k1 + 2), ϕS(〈i0k1 f (k1+1)0〉)(k1 + 3), . . . , ϕS(〈i0k1 f (k1+1)0k 〉)(k1 + k + 2), . . . ,
until the first value k2 is found such that ϕS(〈i0k1 f (k1+1)0k2 〉)(k1 + k2 + 2)↓ .

Let y2 = ϕS(〈i0k1 f (k1+1)0k2 〉)(k1 + k2 + 2). Then we set fi (x) = 0 for all k1 + 2 ≤ x ≤ k1 + k2 + 1 and
fi (k1 + k2 + 2) = y2 + 1.
Goto Stage 3.

Again, if none of the values ϕS(〈i0k1 f (k1+1)〉)(k1 + 2), ϕS(〈i0k1 f (k1+1)0k 〉)(k1 + k + 2), k ∈ N+, is defined, then Stage 2

is not left. But in this case we are again done, since then {i0k1 f (k1 + 1)0∞
} /∈ BC(S).

Now this construction is iterated. We assume that Stage n, n > 1 has been left. Then numbers k1, . . . , kn have been
found such that

ϕ
S( f

k1+···+k`+`
i )

(k1 + · · · + k` + `)↓ for ` = 1, . . . , n.

So, fi (x) is already defined for all 0 ≤ x ≤ k1 + · · · + kn + n.
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Stage n + 1, n ≥ 2. Try to compute

ϕS(〈i0k1 fi (k1+1)···0kn fi (k1+···+kn+n)〉)(k1 + · · · + kn + n + 1)

ϕS(〈i0k1 fi (k1+1)···0kn fi (k1+···+kn+n)0〉)(k1 + · · · + kn + n + 2)

·

·

·

ϕS(〈i0k1 fi (k1+1)···0kn fi (k1+···+kn+n)0k 〉)(k1 + · · · + kn + n + k + 1)

·

·

·

until the first value kn+1 is found such that

ϕS(〈i0k1 fi (k1+1)···0kn fi (k1+···+kn+n)0kn+1 〉)
(k1 + · · · + kn + n + kn+1 + 1)↓ .

Let yn+1 = ϕS(〈i0k1 fi (k1+1)···0kn fi (k1+···+kn+n)0kn+1 〉)
(k1 +· · ·+ kn +n + kn+1 +1). Then we set fi (x) = 0 for

all k1 +· · ·+kn +n +1 ≤ x ≤ k1 +· · ·+kn +n +kn+1, and set fi (k1 +· · ·+kn +kn+1 +n +1) = yn+1 +1.

As before, if Stage n + 1 is not left, we are already done. Thus, it remains to consider the case that Stage n is left
for all n ≥ 1. Let s ∈ R be chosen such that ϕs(i) = fi for all i ∈ N. By the fixed point theorem (cf., e.g.,
Smith [99]) there is a number j such that ϕs( j) = ϕ j . Since f j = ϕs( j) = ϕ j and f j (0) = j we get f j ∈ Usd.
But by construction we have ϕ

S( f
k1
j )
(k1 + 1) 6= f j (k1 + 1), ϕ

S( f
k1+k2+1
j )

(k1 + k2 + 2) 6= f j (k1 + k2 + 2), . . . ,

ϕ
S( f

k1+···kn+n−1
j )

(k1 + · · · + kn + n) 6= f j (k1 + · · · + kn + n), . . . . Therefore, when successively fed f n
j the strategy S

outputs infinitely many wrong hypotheses, and thus f j /∈ BC(S), a contradiction to U0 ∪ Usd ∈ BC(S). �

This proof directly yields the following corollary.

Corollary 20. (1) R /∈ BC.
(2) LIM is not closed under finite union.
(3) R /∈ LIM.

Proof. (1) is a direct consequence of Theorem 19. Clearly, Usd,U0 ∈ LIM and LIM ⊆ BC. Since Usd ∪ U0 /∈ BC,
Assertion (2) follows. Finally, (3) is directly implied by Assertion (2). �

Adleman and Blum [1] have shown that, under canonical formalization, the degree of the algorithmic unsolvability
of “R ∈ LIM” is strictly less than the degree of the algorithmic unsolvability of the halting problem. Brand [25]
studied the related problem of identifying all partial recursive functions. Of course, it is also algorithmically unsolvable
but its degree and the degree of the halting problem are equivalent.

In another direction, Apsı̄tis et al. [9] found n’s, n > 2 such that: (1) whenever, out of n-identifiable classes, the
union of any n − 1 of them is identifiable, then so is the union of all n, yet (2) there are n − 1 identifiable classes such
that every union of n − 2 of them is identifiable, but the union of all n − 1 of them is not.

On the other hand, many more function classes are learnable behaviorally correctly than are learnable in the
limit. In order to state this result and for pointing to another interesting property of behaviorally correct learning,
we modify Definition 8 by relaxing the learning goal. By R∗ and T∗ we denote the class of all functions f ∈ P
and f ∈ P, respectively, for which dom( f ) is cofinite. For f, g ∈ T∗ and a ∈ N we write f =

a g and f =
∗ g if

|{x ∈ N | f (x) 6= g(x)}| ≤ a and |{x ∈ N | f (x) 6= g(x)}| < ∞, respectively. Note that there are three possibilities
for a number x to belong to the sets just considered: both f (x) ↓ and g(x) ↓ , but f (x) 6= g(x), or f (x) ↓ while
g(x)↑ , or f (x)↑ and g(x)↓ .

Definition 11 (Case and Smith [30]). Let U ⊆ R and letψ ∈ P2. Let a ∈ N∪{∗}. The class U is said to be learnable
in the limit with a anomalies (in case a = ∗: with finitely many anomalies) with respect to ψ if there is a strategy
S ∈ P such that for each function f ∈ U ,
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(1) for all n ∈ N, S( f n) is defined,
(2) there is a j ∈ N such that ψ j =

a f and the sequence (S( f n))n∈N converges to j .

This is denoted by U ∈ LIMa
ψ for short. The notions LIMa

ψ and LIMa are defined in the usual way.

Note that for a = 0, the inference type LIM0 coincides with LIM by definition. Furthermore, Theorem 16 can
be straightforwardly generalized to LIMa for all a ∈ N ∪ {∗}, i.e., LIMa is also invariant to the demand S ∈ R
instead of S ∈ P .

Of course, the first question to be asked is whether or not one can learn more if anomalies in the final program
are allowed. The affirmative answer is provided by the following theorem which establishes an infinite hierarchy in
dependence on the number of anomalies allowed and relates this hierarchy to BC.

Theorem 21 (Barzdin [18], Case and Smith [30]).

LIM ⊂ LIM1
⊂ LIM2

⊂ · · · ⊂

⋃
a∈N

LIMa
⊂ LIM∗

⊂ BC

For a proof, we refer the reader to Case and Smith [30]. Note that the inclusion LIM∗
⊂ BC appeared already in

Barzdin [18]. Thus the option to syntactically change hypotheses entails an error-correcting power.
Note that behaviorally correct learning with anomalies was also studied intensively. Case and Smith [30] showed

the following infinite hierarchy.

Theorem 22 (Case and Smith [30]). BC ⊂ BC1
⊂ BC2

⊂ · · · ⊂
⋃

a∈N BCa
⊂ BC∗

Furthermore, in a private communication to Case and Smith, Leo Harrington pointed out the following surprising
result (cf. Case and Smith [30] for a proof).

Theorem 23. R ∈ BC∗

We say that a strategy S is general purpose if it BC∗-identifiesR. An interesting result concerning general purpose
strategies was shown by Chen [31,32]. He proved that for every general purpose strategy S there are functions f ∈ R
such that the finite set of anomalies made in each explanation S( f n) grows without bound as n tends to infinity. That
is, the hypotheses become more and more degenerate.

There is another peculiarity in behaviorally correct learning with anomalies. For a ∈ N+, Definition 11 requires the
final program to be correct for all but at most a arguments x ∈ N. A natural modification is then to require correctness
for all but exactly a arguments x ∈ N. The resulting learning types are denoted by LIM=a and BC=a . Case and
Smith [30] have shown that LIM=a

= LIM, i.e., the knowledge that there are precisely a anomalies in the final
program allows one to patch the final program in the limit and to converge to a correct one. In contrast, BC=a

= BCa

for all a ∈ N as shown by Kinber [69]. Intuitively, the difference between LIMa and BCa can be explained by noting
that every program output by a behaviorally correct learner after the semantic point of convergence is incorrect on a
different set of arguments.

Further results concerning learning with anomalies can be found e.g., in Freivalds et al. [46], Gasarch et al. [51],
Kinber and Zeugmann [70,68], and Smith and Velauthapillai [101].

Looking at behaviorally correct learning with and without anomalies, it is not difficult to see that BCa is also
invariant to the demand to learn with recursive strategies only. That is, using the same ideas as in the proof of
Theorem 16 one can show the following result.

Theorem 24. Let (ϕ,Φ) be a complexity measure. For every a ∈ N∪{∗} there is a function s ∈ R such that ϕs(i) ∈ R
and BCa

ϕ(ϕi ) ⊆ BCa
ϕ(ϕs(i)) for all i ∈ N.

By definition, semantic convergence allows the learner to output infinitely many different correct programs. Thus, it
is natural to ask what happens if we sharpen the definition ofBC by adding the requirement that the set {S( f n) | n ∈ N}

of all produced hypotheses is of finite cardinality. Interestingly, then we again get the learning type LIM. This result
appeared first in Barzdin and Podnieks [20] and was generalized by Case and Smith [30] (see Theorem 2.9).

A further interesting modification of behaviorally correct learning was introduced by Podnieks [93]. Instead of
requiring semantic convergence, he introduced a certain type of uncertainty by demanding correct hypotheses to
occur with a certain frequency.
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Definition 12 (Podnieks [93]). Let 0 < p ≤ 1, let U ⊆ R and let ϕ ∈ Göd . The class U is said to be behaviorally
correctly learnable with frequency p if there is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S( f n) is defined,

(2) lim infk→∞

|{n|ϕM( f n )= f, 0≤n≤k}|

k ≥ p

If U is behaviorally correctly learnable with frequency p by a strategy S, we write U ∈ BCfreq(p)(S). BCfreq(p) is
defined analogously to the above.

Podnieks [93,94] proved that BCfreq

(
1

n+1

)
⊂ BCfreq

(
1

n+2

)
for all n ∈ N. Intuitively, this theorem holds, since BC

is not closed under union. For example, taking U0 and Usd and trying half the time to learn any function in U0 ∪ Usd
by simulating any learner for U0 and for Usd, respectively, and then outputting the hypotheses obtained alternatively

shows that BC ⊂ BCfreq

(
1
2

)
.

Additionally, he discovered that the BCfreq hierarchy is discrete. More formally, he showed the following. Let p

with 1/n ≥ p > 1/(n + 1) be given. Then BCfreq(p) = BCfreq

(
1
n

)
.

Pitt [92] then defined the LIM-analogue to Podnieks’ behaviorally correct frequency identification, i.e., LIMfreq
and showed an analogous theorem.

Another way to attack the non-closure under finite union was proposed by Smith [98] who introduced the notion
of team learning (or pluralistic inference). For the sake of motivation imagine the task that a robot has to explore a
planet. There may be different models for the dynamics of the planet and so the robot is required to learn. While it
may be possible to learn the parameters of each single model, due to the non-closure under finite union, it may be
impossible to learn the parameters of all these models at once. So, if the number of models is not too large, it may be
possible to send a finite number of robots instead of a single one. If one of them learns successfully, the successful
robot can perform the exploration.

So, in the basic model of team learning we allow m learning strategies instead of a single one and request, for each
f ∈ U , one of them to be successful. Of course, one can consider teams of BC learners or teams of LIM learners.
The resulting learning types are denoted by BCteam(m) and LIMteam(m), respectively.

Last but not least, one can also consider probabilistic inference. In this model, it is required that the sequence
S( f n)n∈N converges with a certain probability p. This model was introduced by Freivalds [47] in the setting of
finite learning and was then adapted to BC and LIM learning. Let us denote the resulting models by BCprob(p) and
LIMprob(p), respectively.

Pitt [92] obtained the following beautiful unification results. First, he showed that BCfreq(p) = BCprob(p) and
LIMfreq(p) = LIMprob(p) for every p with 0 < p ≤ 1. Thus, probabilistic identification is also discrete.
Additionally, he succeeded to prove the following theorem.

Theorem 25 (Pitt [92]). (1) BCfreq

(
1
n

)
= BCprob

(
1
n

)
= BCteam(n) for every n ∈ N+.

(2) LIMfreq

(
1
n

)
= LIMprob

(
1
n

)
= LIMteam(n) for every n ∈ N+.

Furthermore, Wiehagen, Freivalds and Kinber [113] showed that, with probability close to 1, probabilistic strategies
learning in the limit with n mind changes are able to identify function classes which cannot be identified by any
deterministic strategy learning in the limit with n mind changes. Additionally, Freivalds, Kinber and Wiehagen [44]
studied finite probabilistic learning and probabilistic learning in the limit in non-standard numberings. In particular,
for I ∈ {FIN , LIM}, they showed that there exist numberings ψ such that, with respect to ψ , no infinite function
class can be I -learned deterministically, whereas every class in I is I -learnable with probability 1−ε for every ε > 0.

As we have mentioned, one reason for the additional learning power of team inference is due to the fact that neither
LIM nor BC is closed under union. Another reason was found by Smith [98] for teams of LIM-type learners. That
is, one can trade machines for errors. In its easiest form this can be expressed as LIMa

⊆ LIMteam(a + 1). In order
to see this, recall that we have LIM=a

= LIM. Thus, the first team member assumes that the final program has no
errors, the second team member assumes that there is exactly one error in the final program, . . . , and the (a + 1)th
team member supposes that there are exactly a errors in the final program. Then every team member tries to patch as
many errors as it assumes. So one of the team members is correct and succeeds.



24 T. Zeugmann, S. Zilles / Theoretical Computer Science 397 (2008) 4–56

Fig. 2. Hierarchies of frequency identification, probabilistic inference, team learning and learning with anomalies.

Subsequently, Daley [34] discovered the error-correcting power of pluralism in BC-type inductive inference. Note
that in contrast, it is generally impossible to trade errors for machines. Again, in its easiest form this says that for any
n ∈ N+ we have LIMteam(n + 1) \ LIMa

6= ∅ and BCteam(n + 1) \ BCa
6= ∅ for all a ∈ N, a > n.

Since there are some excellent papers treating probabilistic, pluralistic and frequency identification we are not
exploring this subject here in more detail. Instead, the interested reader is encouraged to consult Ambainis [4] and
Pitt [92] for further information concerning probabilistic learning as well as Apsı̄tis et al. [10] and Smith [98,100] for
additional material about team inference.

Fig. 2 summarizes the results concerning frequency identification, probabilistic inference, team learning and
learning with anomalies.

5.2. Varying the set of admissible strategies

It should be noted that in Definition 8 no requirement is made concerning the intermediate hypotheses output by
strategy S. So, first, we again aim to introduce the consistency requirement already considered in Section 4. However,
there are several possibilities to do this. Since a more detailed study of these different possibilities will shed some
light on the question of how natural are intuitive postulates, we shall provide a rather complete discussion here.
Additionally, in order to make it more interesting we consider the notion of δ-delay, too, which has recently been
introduced by Akama and Zeugmann [2].

Definition 13 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called consistently
learnable in the limit with δ-delay with respect to ψ if there is a strategy S ∈ P such that

(1) U ∈ LIMψ (S),
(2) ψS( f n)(x) = f (x) for all f ∈ U , n ∈ N and all x such that x + δ ≤ n.

CONSδψ (S), CONS
δ
ψ and CONSδ are defined analogously to the above.

Note that for δ = 0 we get Barzdin’s [12] original definition of CONS. We therefore usually omit the upper index
δ if δ = 0. This is also done for all other versions of consistent learning defined below. Moreover, we use the term
δ-delay, since a consistent strategy with δ-delay correctly reflects all but at most the last δ data seen so far. If a strategy
does not always work consistently with δ-delay we call it δ-delay inconsistent.

Next, we modify CONSδ in the same way Jantke and Beick [66] changed CONS, i.e., we add the requirement
that the strategy is defined on every input.
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Definition 14 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called R-
consistently learnable in the limit with δ-delay with respect to ψ if there is a strategy S ∈ R such that U ∈

CONSδψ (S).
R- CONSδψ (S), R- CONSδψ and R- CONSδ are defined analogously to the above.

Note that in Definition 14 consistency with δ-delay is only demanded for inputs that correspond to some function
f in the target class. Therefore, in the following definition we incorporate Wiehagen and Liepe’s [114] requirement
on a strategy to work consistently on all inputs into our scenario of consistency with δ-delay.

Definition 15 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called T -
consistently learnable in the limit with δ-delay with respect to ψ if there is a strategy S ∈ R such that

(1) U ∈ CONSδψ (S),
(2) ψS( f n)(x) = f (x) for all f ∈ R, n ∈ N and all x such that x + δ ≤ n.

T - CONSδψ (S), T - CONSδψ and T - CONSδ are defined in the same way as above.

So, for δ = 0 we again obtain the learning type T - CONS already considered at the end of Section 4.
Next, we introduce coherent learning (again with δ-delay). While our consistency with δ-delay demand requires

a strategy to correctly reflect all but at most the last δ data seen so far, the coherence requirement only demands to
correctly reflect the value f (n −· δ) on input f n .

Definition 16 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and let δ ∈ N. The class U is called coherently
learnable in the limit with δ-delay with respect to ψ if there is a strategy S ∈ P such that

(1) U ∈ LIMψ (S),
(2) ψS( f n)(n −· δ) = f (n −· δ) for all f ∈ U and all n ∈ N such that n ≥ δ.

COHδ
ψ (S), COH

δ
ψ and COHδ are defined analogously to the above.

Now, performing the same modifications to coherent learning with δ-delay as we did in Definitions 14 and 15 to
consistent learning with δ-delay results in the learning typesR- COHδ and T - COHδ , respectively. We therefore omit
the formal definitions of these learning types here.

Using standard techniques one can show that for all δ ∈ N and all learning types LT ∈ {CONSδ, R- CONSδ,
T - CONSδ, COHδ, R- COHδ, T - COHδ

} we have LT ϕ = LT for every Gödel numbering ϕ (cf. Lemma 2).
Let us first answer the question whether or not the relaxation to learn coherently with δ-delay instead of demanding

consistency with δ-delay does enhance the learning power of the corresponding learning types introduced above. The
negative answer is provided by the following theorem.

Theorem 26 (Akama and Zeugmann [2]). Let δ ∈ N be arbitrarily fixed. Then we have

(1) CONSδ = COHδ ,
(2) R- CONSδ = R- COHδ ,
(3) T - CONSδ = T - COHδ .

Therefore, in the following it suffices to deal with consistent learning with δ-delay. We postpone the study of the
different versions of consistent learning with δ-delay to Section 6, where we provide characterizations in terms of
complexity and Section 7, where we investigate their learning power in dependence on the type of consistency and the
delay parameter δ. Furthermore, in Section 8 characterizations in terms of computable numberings are given.

Note that T -consistent learning with or without δ-delay has an interesting property. Let f ∈ R be any function.
If a T -consistent learner is successively fed f n for n = 0, 1, . . . then it converges if and only if it learns f . In other
words, a T -consistent learner signals its inability to learn a function by performing infinitely many mind changes. This
property is called reliability. More precisely, a T -consistent learner is even reliable on the set T of all total functions.
As a matter of fact, reliable inference has been studied intensively before the notion of T -consistent identification was
around.
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Therefore, it is advantageous to recall here the definition of reliable3 learning introduced by Blum and Blum [21]
and Minicozzi [84]. When talking about reliable learning it is natural to introduce the set M of functions on which
the learner is required to be reliably as a new parameter. That is, a learning strategy S is reliable on a set M provided
it converges, when fed the graph of a function f in M, if and only if it learns f .

Definition 17 (Blum and Blum [21], Minicozzi [84]). Let U ⊆ R, let M ⊆ P and let ϕ ∈ Göd; then U is said to be
reliably learnable on M if there is a strategy S ∈ R such that

(1) U ∈ LIMϕ(S), and
(2) for all functions f ∈ M, if the sequence (S( f n))n∈N converges, say to j , then ϕ j = f .

By M-REL we denote the family of all function classes that are reliably learnable on M.

In particular, we shall consider the cases where M = T and M = R, i.e., reliable learnability on the set of all
total functions and all recursive functions, respectively. For the sake of completeness, we also mention here that the
family of all function classes reliably identifiable on the set of all partial functions equals the set of all function classes
reliably learnable on the set of all partial recursive functions. Furthermore, reliable learning on the set of all partial
functions allows the following characterization in terms of consistency.

Theorem 27 (Blum and Blum [21]). P-REL = P-REL = T - CONSarb.

Furthermore, reliable learning possesses some very nice closure properties as shown by Minicozzi [84] (cf.
Theorems 3 and 4 in [84]). For the sake of completeness, we recall these results here but refer the reader to [84]
for a proof.

Theorem 28 (Minicozzi [84]). Let M ⊆ P; then we have:

(1) M-REL is closed under recursively enumerable union.
(2) For every class U ⊆ R, if U ∈ M-REL then also the class of all finite variants of the functions in U is reliable

learnable on M, i.e., [[U]] ∈ M-REL.

The following theorem provides a first insight into the learning capabilities of reliable learning in dependence on
the set M. The first rigorous proof of T-REL ⊂ R-REL appeared in Grabowski [55]. A conceptually much easier
proof was provided by Stephan and Zeugmann [105]. Therefore we skip this proof below.

Theorem 29. P-REL ⊂ T-REL ⊂ R-REL ⊂ LIM.

Proof. P-REL ⊂ T-REL is a direct consequence of Theorems 15 and 27.
R-REL ⊆ LIM is obvious. For showing thatLIM\R-REL 6= ∅, we use the class Usd which is clearly inLIM.

Suppose Usd ∈ R-REL. Then applying Theorem 28 directly yields [[Usd]] ∈ R-REL, too. But [[Usd]] = R (cf.
Claim 2 in the proof of Lemma 1). Since R-REL ⊆ LIM, we get R ∈ LIM, a contradiction to Corollary 20. �

Note that one can extend the notion of reliable learning to behaviorally correct reliable inference, too. Additionally,
starting from the notion of reliability one can define for BC- and LIM-type identification the notion of one-sided
error probabilistic learning as well as of reliable frequency identification (see Kinber and Zeugmann [68]). The flavor
of the obtained results is similar to Podnieks’ [93,94] and Pitt’s [92]. On the other hand, one can also look at team
learning as a way of introducing a bounded non-determinism to learning. But even introducing an unbounded non-
determinism to reliable learning does not enlarge the learning capabilities of reliable LIM inference (see Pitt [92],
Theorem 4.14). So, though we have Theorem 25, there are subtle differences between probabilistic and frequency
identification on the one hand and pluralistic learning on the other.

We shall come back to reliable learning in Sections 6 and 7. For getting a broader picture, we continue here with the
main subject of this section, i.e., defining further learning models. So far, we have varied the mode of convergence,
the set of admissible strategies, and the learning goal. Thus, it remains to consider possible modifications of the
information supply.

3 Reliable learning is also called strong identification, e.g., by Minicozzi [84] and Grabowski [55].
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5.3. Varying the information supply

Next, we consider two variations of the information fed to the learner. Looking at all the learning models defined so
far we see that a strategy has always access to all examples presented so far. In the following definition, we consider
the variant where the strategy is only allowed to use its last guess and the new datum coming in.

Definition 18 (Wiehagen [109]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be iteratively learnable with
respect to ψ if there is a strategy S ∈ P such that for each function f ∈ U ,

(1) for every n ∈ N, Sn( f ) is defined, where
S0( f ) = S(0, f (0)), and
Sn+1( f ) = S(Sn( f ), n + 1, f (n + 1)).

(2) There is a j ∈ N such that ψ j = f and the sequence (S( f n))n∈N converges to j .

If the class U is iteratively learnable with respect to ψ by a strategy S, we write U ∈ IT ψ (S). Furthermore, IT ψ and
IT are defined analogously to the above.

Of course, an iterative strategy can try to memorize the pairs (n, f (n)) in its current hypothesis. Then the strategy
would have access to the whole initial segment f n presented so far. On the other hand, the strategy has to converge.
Therefore, an iterative strategy can only memorize finitely many pairs (n, f (n)), i.e., a finite subfunction, in its
hypothesis. Consequently, it is only natural to ask whether or not this restriction does decrease the resulting learning
power. The affirmative answer is provided by the following theorem.

Theorem 30 (Wiehagen [109]). IT ⊂ LIM

Proof. Clearly, we have IT ⊆ LIM. It remains to show that LIM \ IT 6= ∅. The separating class U is defined as
follows. We modify the class of self-describing functions a bit by requiring all function values to be strictly positive,
i.e., we set Usdp = { f | f ∈ R, ϕ f (0) = f, ∀x[ f (x) > 0]} and U = U0 ∪ Usdp.

Claim 1. U ∈ LIM
Intuitively, the desired strategy S outputs f (0) as long as all function values seen so far are greater than 0. If S sees

0 as a function value for the first time, it switches its learning mode. From this point onwards S uses the identification
by enumeration strategy to learn the target function. We omit the details.

Claim 2. U /∈ IT
It suffices to show that for every S with U0 ∈ IT ϕ(S) there is a function f ∈ Usdp such that f /∈ IT ϕ(S). Let

s ∈ R be chosen such that for all j ∈ N

ϕs( j)(0) = j, and for all n ∈ N :

ϕs( j)(n + 1) =

1, if S(Sn(ϕs( j)), n + 1, 1) 6= Sn(ϕs( j))

2, if S(Sn(ϕs( j)), n + 1, 1) = Sn(ϕs( j)) and
S(Sn(ϕs( j)), n + 1, 2) 6= Sn(ϕs( j)).

Note that one of these cases must happen. For seeing this, suppose the converse. Let m be the least n such that

S(Sn−1(ϕs( j)), n, 1) = S(Sn−1(ϕs( j)), n, 2) = Sn−1(ϕs( j)).

Now consider the functions g and g′ defined as

g(x) =

ϕs( j)(x), if x < m
1, if x = m
0, if x > m,

and g′(x) = g(x) for all x 6= m and g′(m) = 2. Since g, g′
∈ U0 the strategy S must iteratively learn both g and g′.

But by the choice of m we can directly conclude that the sequences (Sn(g))n∈N and (Sn(g′))n∈N converge to the same
number, a contradiction.

Consequently, ϕs( j) ∈ R for every j . By the fixed point theorem (cf., e.g., [99]) there is an i ∈ N such that
ϕi = ϕs(i). By construction, ϕi ∈ Usdp and S changes its hypothesis in every learning step when successively fed ϕi .
Thus, for f = ϕi we have f /∈ IT ϕ(S). �
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It should be mentioned that Wiehagen [109] proved a slightly stronger result than our Theorem 30, since he showed
the class U in the proof above to be even learnable by a feed-back strategy. A feed-back strategy, when successively
fed a function f works like an iterative strategy but can additionally make a query by computing an argument x and
asking for f (x). While feed-back learning is stronger than iterative learning, it is still weaker than learning in the
limit. It should be noted that a suitably modified version of feed-back learning has recently attracted attention in the
setting of language learning from positive data (see [27,76]).

Finally, iterative learning is also quite sensitive to the order in which examples are presented. Jantke and Beick [66]
considered IT arb and showed the following result.

Theorem 31 (Jantke and Beick [66]). R- T OTAL # IT arb

In the next definition, we consider a variant of how to enrich the information presented to a learner. This type of
inference was introduced by Wiehagen [111] and was intensively studied in Freivald and Wiehagen [37]. It was further
investigated by Freivalds, Botuscharov, and Wiehagen [42] and, in the context of language identification, by Jain and
Sharma [63]. We refer to it as learning with additional information and indicate this by using + as upper index.

Definition 19 (Wiehagen [111]). Let U ⊆ R and let ϕ ∈ Göd. U ∈ LIM+ if there is a strategy S ∈ P2 such that
for every f ∈ U and for every bound s ≥ minϕ f the following conditions are satisfied.

(1) S(s, f n) is defined for all n ∈ N, and
(2) the sequence (S(s, f n))n∈N converges to a number j such that ϕ j = f .

Whenever appropriate, we shall also consider LT + for any of the learning types defined in this paper.
Learning with additional information shows that consistent learning is full of surprises. Note that Assertion (1) in

the following theorem was shown by Freivald and Wiehagen [37], while Assertion (2) goes back to Wiehagen [111].

Theorem 32 (Freivald and Wiehagen [37], Wiehagen [111]). (1) T - CONS+
= T - CONS, and

(2) R ∈ CONS+.

Proof. Since we obviously have T - CONS ⊆ T - CONS+, it suffices to show that T - CONS+
⊆ T - CONS. Let

U ∈ T - CONS+(S), where S ∈ R2. Then for every f ∈ U we can construct in the limit a number s such that the
sequence (S(s, f n))n∈N converges to a number j . Since S is T -consistent, we can conclude that ϕ j = f . Note that,
in general, we do not have s ≥ minϕ f . The formal proof is done as follows. We have to define a strategy S′

∈ R such
that U ∈ T - CONS(S′). Let α ∈ N∗ be any tuple of length 1. The desired strategy S′ is defined as follows.

We set i0 = 0 and S′(α) = S(i0, α).
Now assume n ∈ N such that in and S′(α) for all tuples of length n + 1 are already defined. Let y ∈ N; we set
in+1 = in and S′(αy) = S(in, αy) provided S(in, αy) = S(in, α). Otherwise, we set in+1 = in + 1 and

S′(αy) = S(in+1, αy).
By construction, we directly obtain S′

∈ R because of S ∈ R2. Furthermore, S is T -consistent, so is S′.
Additionally, since for every f ∈ U there is an s ∈ N such that the sequence (S(s, f n))n∈N converges (every
s ≥ minϕ f has this property) the sequence (S′( f n))n∈N must converge, too. So, let j be the number the sequence
(S′( f n))n∈N converges to. Finally, by the T -consistency of S′ we can conclude that ϕ j = f . This proves Assertion (1).

For showing the remaining Part (2), we use the amalgamation technique (cf. Wiehagen [111], Case and Smith [30]).
Let amal be a recursive function mapping any finite set I of ϕ-programs to a ϕ-program such that for any x ∈ N,
ϕamal(I )(x) is defined by running ϕi (x) for every i ∈ I in parallel and taking the first value obtained, if any.

The desired strategy S ∈ P2 is mainly defined by using the function amal defined above. Let f ∈ R and let s ∈ N;
we set I f,−1 = {0, . . . , s}. For n ≥ 0 we proceed inductively. Assume I f,n−1 to be already defined. We set

t = “the minimal number such that for all 0 ≤ x ≤ n there is an

i ∈ I f,n−1 with Φi (x) ≤ t and ϕi (x) = f (x).”

Furthermore, we define

I −

f,n = {i | i ∈ I f,n−1, ∃x ≤ n[Φi (x) ≤ t, ϕi (x) 6= f (x)]}.

Moreover, we set I f,n = I f,n−1 \ I −

f,n . Now we define the desired strategy S ∈ P2 as follows. For all n ∈ N and all
s ∈ N let
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S(s, f n) = “Compute I f,n . If the computation of I f,n stops then let
S(s, f n) = amal(I f,n).
Otherwise, S(s, f n) =↑ .”

It remains to show that R ∈ CONS+(S). Let s ∈ N be any number such that s ≥ minϕ f . Then, by construction,
the computation of I f,n stops for all n ∈ N and we have I f,n ⊆ I f,n−1 for all n ∈ N. Furthermore, by construction
S is consistent, too. Since minϕ f ∈ I f,n for all n ∈ N, we also have I f,n 6= ∅ for all n ∈ N. Consequently, the
sequence (I f,n)n∈N of sets converges to a finite and non-empty set I containing at least one ϕ-program for f . Thus,
the sequence (S(s, f n))n∈N converges to amal(I ) and since S is consistent we can conclude ϕamal(I ) = f . This proves
Assertion (2). �

Another interesting effect is observed when studyingFIN+. In contrast to Theorem 17,FIN+ comprises classes
containing an accumulation point, e.g., U = {0i 10∞

| i ≤ minϕ 0i 10∞
} ∪ {0∞

}. On the other hand, it is easy to show
that {0i 10∞

| i ∈ N} ∪ {0∞
} /∈ FIN+. Thus, we directly get:

Theorem 33. FIN ⊂ FIN+
⊂ ℘(R).

For further information concerning inductive inference with additional information, we refer the interested reader
to Jain et al. [62].

After having taken a look at possible variations of Gold’s [53] original model of learning in the limit, next we aim
to obtain a deeper insight into what some of these learning models have in common and where the differences are.
Characterizations are useful tools for achieving this goal as we have already seen. Therefore, we continue with them.
We start with characterizations in terms of complexity, since some of these characterizations are applied subsequently.

6. Characterizations in terms of complexity

In this section we characterize T - CONSδ , CONSδ , T-REL, R-REL, and LIM in terms of complexity. The
importance of such characterizations has already been explained in Section 3.1. However, in order to achieve the
aforementioned characterizations, several modifications are necessary. In particular, so far we used functions to
compute the relevant complexity bounds in the definitions of the complexity classes Ct , where t ∈ R and in Ch ,
where h ∈ R2. Now we need stronger tools, i.e., computable operators which are introduced next.

First, we recall the definitions of recursive and general recursive operator. Let (Fx )x∈N be the canonical
enumeration of all finite functions.

Definition 20 (Rogers [97]). A mapping O : P → P from partial functions to partial functions is called a partial
recursive operator if there is a recursively enumerable set W ⊆ N3 such that for any y, z ∈ N it holds that
O( f )(y) = z iff there is an x ∈ N such that (x, y, z) ∈ W and f extends the finite function Fx .

Furthermore, a partial recursive operator O is called a general recursive operator iff T ⊆ dom(O), and f ∈ T
implies O( f ) ∈ T.

A mapping O : P → P is called an effective operator iff there is a function g ∈ R such that O(ϕi ) = ϕg(i) for all
i ∈ N. An effective operator O is said to be total effective provided thatR ⊆ dom(O), and ϕi ∈ R implies O(ϕi ) ∈ R.

For more information about general recursive operators and effective operators the reader is referred to [58,88,
119]. If O is an operator which maps functions to functions, we write O( f, x) to denote the value of the function
O( f ) at the argument x . Any computable operator can be realized by a 3-tape Turing machine T which works as
follows: If for an arbitrary function f ∈ dom(O), all pairs (x, f (x)), x ∈ dom( f ) are written down on the input tape
of T (repetitions are allowed), then T will write exactly all pairs (x,O( f, x)) on the output tape of T (under unlimited
working time).

Let O be a general recursive or total effective operator. Then, for f ∈ dom(O), m ∈ N, we set: ∆O( f,m) =“the
least n such that, for all x ≤ n, f (x) is defined and, for the computation of O( f,m), the Turing machine T only uses
the pairs (x, f (x)) with x ≤ n; if such an n does not exist, we set ∆O( f,m) = ∞.”

For u ∈ R we define Ωu to be the set of all partial recursive operators O satisfying ∆O( f,m) ≤ u(m) for all f ∈

dom(O). For the sake of notation, below we shall use id + δ, δ ∈ N, to denote the function u(x) = x + δ for all x ∈ N.
Now we are ready to provide the first group of characterizations.
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6.1. Characterizing T - CONSδ and CONSδ

We start by characterizing T - CONSδ and CONSδ , since these characterizations are conceptually easier. For
achieving these characterizations we use mainly ideas and techniques from Blum and Blum [21] and Wiehagen [111].
Furthermore, in the following we always assume that learning is done with respect to any fixed ϕ ∈ Göd .

As in Blum and Blum [21] we define operator complexity classes as follows. Let O be any computable operator;
then we set

CO = { f | ∃i[ϕi = f ∧ ∀
∞x[Φi (x) ≤ O( f, x)]]} ∩R.

First, we characterize T - CONSδ .

Theorem 34. Let U ⊆ R and let δ ∈ N; then we have: U ∈ T - CONSδ if and only if there exists a general recursive
operator O ∈ Ωid+δ such that O(R) ⊆ R and U ⊆ CO .

Proof. Necessity. Let U ∈ T - CONSδ(S), S ∈ R. Then for all f ∈ R and all n ∈ N we define O( f, n) =

ΦS( f n+δ)(n).
Since ϕS( f n+δ)(n) is defined for all f ∈ R and all n ∈ N by Condition (2) of Definition 15, we directly get from

Condition (1) of the definition of a complexity measure that ΦS( f n+δ)(n) is defined for all f ∈ R and all n ∈ N,
too. Moreover, for every t ∈ T and n ∈ N there is an f ∈ R such that tn

= f n . Hence, we have O(T) ⊆ R ⊆ T.
Moreover, in order to compute O( f, n) the operator O reads only the values f (0), . . . , f (n + δ). Thus, we have
O ∈ Ωid+δ .

Now let f ∈ U . Then the sequence (S( f n))n∈N converges to a correct ϕ-program i for f . Consequently,
O( f, n) = Φi (n) for almost all n ∈ N. Therefore, we conclude U ⊆ CO.

Sufficiency. Let O ∈ Ωid+δ such that O(R) ⊆ R and U ⊆ CO. We have to define a strategy S ∈ R such that
U ∈ T - CONSδ(S). By the definition of CO we know that for every f ∈ U there exist i and k such that ϕi = f and
Φi (x) ≤ max{k, O( f, x)} for all x . Thus, the desired strategy S searches for the first current candidate for such a
pair (i, k) in the canonical enumeration c2 of N × N and converges to i provided an appropriate pair has indeed been
found. Until this pair (i, k) is found, the strategy S outputs auxiliary consistent hypotheses. For doing this, we choose
g ∈ R such that ϕg(〈α〉)(x) = yx for every tuple α ∈ N∗, α = (y0, . . . , yn) and all x ≤ n.

S( f n) = “Compute O( f, x) for all x ≤ n −· δ. Search for the least z ≤ n such that for c2(z) = (i, k) the conditions
(A) Φi (x) ≤ max{k, O( f, x)} for all x ≤ n −· δ, and
(B) ϕi (x) = f (x) for all x ≤ n −· δ

are fulfilled. If such a z is found, set S( f n) = i .
Otherwise, set S( f n) = g( f n).”

Since O ∈ Ωid+δ , the strategy can compute O( f, x) for all x ≤ n −· δ and since c2 ∈ R it also can perform
the desired search effectively. By Condition (2) of the definition of a complexity measure, the test in (A) can be
performed effectively, too. If this test has succeeded, then Test (B) can also be effectively executed by Condition (1)
of the definition of a complexity measure. Thus, we get S ∈ R. Finally, by construction S is always consistent with
δ-delay, and if f ∈ U , then the sequence (S( f n))n∈N converges to a correct ϕ-program for f . �

The following characterization of CONSδ is easily obtained from the one given above for T - CONSδ by relaxing
the requirement O(R) ⊆ R to O(U) ⊆ R.

Theorem 35. Let U ⊆ R and let δ ∈ N; then we have: U ∈ CONSδ if and only if there exists a partial recursive
operator O ∈ Ωid+δ such that O(U) ⊆ R and U ⊆ CO .

Proof. The necessity is proved mutatis mutandis as in the proof of Theorem 34 with the only modification that O( f, x)
is now defined for all f ∈ U instead of for all f ∈ R. This directly yields O ∈ Ωid+δ , O(U) ⊆ R and U ⊆ CO.

The only modification for the sufficiency part is to leave S( f n) undefined if O( f, x) is not defined for f /∈ U . We
omit the details. �

We continue this section by using Theorem 34 to show that T - CONSδ is closed under enumerable unions.
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Theorem 36. Let δ ∈ N and let (Si )i∈N be a recursive enumeration of strategies working T -consistently with δ-delay.
Then there exists a strategy S ∈ R such that

⋃
i∈N T - CONSδ(Si ) ⊆ T - CONSδ(S).

Proof. The proof of the necessity of Theorem 34 shows that the construction of the operator O is effective provided
a program for the strategy is given. Thus, we effectively obtain a recursive enumeration (Oi )i∈N of operators
Oi ∈ Ωid+δ such that Oi (R) ⊆ R and T - CONSδ(Si ) ⊆ CO i .

Now we define an operator O as follows. Let f ∈ R and x ∈ N. We set O( f, x) = max{Oi ( f, x) | i ≤ x}.
Thus, we directly get O ∈ Ωid+δ , O(R) ⊆ R and

⋃
i∈N T - CONSδ(Si ) ⊆ CO. By Theorem 34 we can conclude⋃

i∈N T - CONSδ(Si ) ⊆ T - CONSδ(S). �

On the other hand, CONSδ and R- CONSδ are not even closed under finite union. This is a direct consequence
of Theorem 19. It is easy to verify that Usd, U0 ∈ R- CONSδ and thus Usd , U0 ∈ CONSδ for every δ ∈ N. But
Usd ∪ U0 /∈ BC.

The reader may wonder why we did not provide a characterization for R- CONSδ . The honest answer is that
characterizing R- CONSδ in terms of complexity remains open. Currently, we do not have any idea how to attack
this problem.

On the other hand, the techniques developed so far allow for suitable modifications to obtain the remaining
announced characterizations. This is done in the following subsection.

6.2. Characterizing T-REL, R-REL and LIM

We continue with the characterizations of T-REL, R-REL and LIM in terms of complexity. As the following
theorem shows, these characterizations express the difference of these learning models by different sets of admissible
operators, i.e., general recursive, total effective and effective operators, respectively. Assertion (1) was shown
by Grabowski [55], Assertion (2) by Blum and Blum [21] and Assertion (3) is a variation of a corresponding
characterization obtained by Wiehagen [111].

In the proofs below, it is technically convenient to use limiting recursive functionals instead of partial recursive
functions as strategies. For a formal machine independent definition of a limiting recursive functional see Rogers [97].
Intuitively, a limiting recursive functional is a mapping which maps functions to numbers in a computable way. Using
3-tape Turing machines with input, work and output tape and a read-only head for the input tape, a read–write head
for the work tape and a write-only head for the output tape, a limiting recursive functional can be defined as follows.

A partial mapping S : P → N is called limiting recursive functional if there is a 3-tape Turing machine T (as
described above) working as follows:

If an arbitrary function f ∈ P is written down on the input tape of T (in an arbitrary enumeration of input–output
examples where repetitions are allowed), then, if S( f ) is defined, T writes a finite non-empty sequence of natural
numbers on the output tape such that the last number is equal to S( f ); (T does not need to stop after doing so), or T
writes an infinite sequence of natural numbers which converges on its output tape such that its limit is equal to S( f ). It
is allowed that the sequence written on the output tape depends on the enumeration in which the function f is written
on the input tape, but it is prohibited that its limit depends on it.

If S( f ) is not defined, then two cases are possible. First, S does not uniformly converge on some enumeration in
which the function f is written on the input tape. Second, S never converges — independent of the enumeration in
which the function f is written on the input tape. These cases are not equivalent (cf. Freivald [38]). Therefore, we
require that for all f ∈ P we have: f /∈ dom(S) iff S on f never converges.

Theorem 37. Let U ⊆ R, then we have:

(1) U ∈ T-REL if and only if there exists a general recursive operator O such that U ⊆ CO .
(2) U ∈ R-REL if and only if there exists a total effective operator O such that U ⊆ CO .
(3) U ∈ LIM if and only if there exists an effective operator O such that O(U) ⊆ R and U ⊆ CO .

Proof. Necessity. The first part of the proof is almost the same for all three assertions. Let LT ∈

{T-REL, R-REL, LIM} and let U ⊆ LT (S) for some strategy S ∈ R. The desired operator O is defined as
follows. Let f ∈ M and let x ∈ N.



32 T. Zeugmann, S. Zilles / Theoretical Computer Science 397 (2008) 4–56

O( f, x) = “Compute S( f x ). Use half of the time for executing (A) and (B) until (C) or (D) happens.
(A) Compute S( f x+1), S( f x+2), . . .

(B) Check if ΦS( f x )(x) = y for y = 0, 1, 2, . . .
(C) In (A) a k ∈ N is found such that S( f x ) 6= S( f x+k). Set

O( f, x) = 0.
(D) In (B) a y ∈ N is found such that ΦS( f x )(x) = y. Set

O( f, x) = ΦS( f x )(x).”

First, we show the necessity part of Assertion (1). Clearly, the operator O is recursive, since by Definition 17, for
all f ∈ T and all x ∈ N we have that S( f x ) is defined. Test (B) can be effectively executed by Property (2) of a
complexity measure. It remains to show that O is general recursive.

Claim 1. O(T) ⊆ T.

Suppose that for some f ∈ T and some x ∈ N the value O( f, x) is not defined. Then, in particular, (C) cannot
happen. But this means that S( f x ) = S( f x+n) for all n ∈ N. Therefore, the sequence (S( f m)m∈N converges to
S( f x ). Since S is reliable on T, we know that ϕS( f x ) = f . Consequently, ϕS( f x )(x) is defined and thus, by Property
(1) of a complexity measure, ΦS( f x )(x) is defined, too. Thus, in (D) a y must be found such that ΦS( f x )(x) = y, a
contradiction to O( f, x) undefined. This proves Claim 1.

Claim 2. U ⊆ CO.

Let f ∈ U be arbitrarily fixed. Since U ∈ LIM(S), the sequence (S( f m))m∈N converges, say to j and ϕ j = f .
Thus, in the definition of O( f, x), Test (C) can succeed only finitely often. That is, for all but finitely many x we have
O( f, x) = ΦS( f x )(x). Consequently, f ∈ CO. Thus Claim 2 is shown and the necessity part of Assertion (1) follows.

For showing the necessity part of Assertion (2) note that the operator O is effective, too. We have to show
O(R) ⊆ R instead of Claim 1, while Claim 2 and its proof remain unchanged. This can be done mutatis mutandis as
above.

For the necessity part of Assertion (3) we again note that the operator O is effective, since by Definition 8 we know
that S( f x ) is defined for all f ∈ U and all x ∈ N. Now we have to show that O(U) ⊆ R, while Claim 2 and its proof
again remain unchanged.

Claim 3. O(U) ⊆ R.

Suppose that for some f ∈ U and some x ∈ N the value O( f, x) is not defined. Then, in particular, (C) cannot
happen. But this means that S( f x ) = S( f x+n) for all n ∈ N. Therefore, the sequence (S( f m))m∈N converges
to S( f x ). Since f ∈ U and U ∈ LIM(S), we know that ϕS( f x ) = f . Consequently, ϕS( f x )(x) is defined and
thus, by Property (1) of a complexity measure, ΦS( f x )(x) is defined, too. Thus, in (D) a y must be found such that
ΦS( f x )(x) = y, a contradiction to O( f, x) undefined. This proves Claim 3.

Thus, we have shown the necessity parts of Assertions (1) through (3).
Sufficiency. Again, the first part of the proof is identical for Assertions (1) through (3). Let O be an operator

satisfying the relevant conditions. We define the desired strategy as a limiting recursive functional.

S( f ) = “Execute Stage 0:
Stage n: Compute c2(n) = (i, k). Output i .
Check for all x ∈ N whether or not Φi (x) ≤ max{k,O( f, x)} and ϕi (x) = f (x). If this test fails for some
x , stop executing Stage n and goto Stage n + 1.”

Now for showing Assertions (1) through (3) it suffices to distinguish the cases M ∈ {T, R, U} and to show that S is
reliable on M. Note that these three cases are completely reflected by the domain of the operator O.

Claim 1. S is reliable on M.

Let f ∈ M. Then we can conclude that O( f, x) is defined for all x ∈ N. Now suppose that f ∈ dom(S), i.e., S( f )
converges, say to i . Since S performs a mind change every time it enters a new stage, it follows that S enters some
Stage n, where c2(n) = (i, k) and never leaves it. Thus, it verifies that Φi (x) ≤ max{k,O( f, x)} and ϕi (x) = f (x)
for all x ∈ N. This proves Claim 1.
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The following claim is identical for Assertions (1) through (3).

Claim 2. f ∈ CO implies S learns f .

By the definition of CO we know that for every f ∈ CO there exist i and k such that ϕi = f and Φi (x) ≤

max{k, O( f, x)} for all x . Then S can never go past Stage n, where c2(n) = (i, k). It follows that S converges, and
since S is reliable, it learns f . Hence, Claim 2 is shown.

By Claims 1 and 2 the theorem follows. �

Further characterizations in the same style as above are possible. Wiehagen [111] showed a characterization of
LIM∗, Kinber and Zeugmann [70] characterized T-RELa for every a ∈ N ∪ {∗}. On the other hand, characterizing
BC and its relaxations BCa , a ∈ N as well as LIMteam(n) and BCteam(n), n ∈ N+, also remains open.

Note that sometimes also a different and stronger characterization of learning types in terms of complexity is
possible. The first results along this line can be found in Blum and Blum [21], who also coined the term a-posteriori
characterization. For stating such a characterization, the notion of compression index is needed.

Definition 21 (Blum and Blum [21]). Let (ϕ,Φ) be a complexity measure, let f ∈ R, and let O be a general
recursive operator. Then i ∈ N is said to be an O-compression index of f if

(1) ϕi = f ,
(2) ∀ j[ϕ j = f → ∀x [Φi (x) ≤ O(Φ j ,max{i, j, x})]].

In this case we also say that the function f is everywhere O-compressed.

Then Blum and Blum [21] proved the following characterization.

Theorem 38 (Blum and Blum [21]). Let U ⊆ R, then we have: U ∈ R-REL if and only if there is a general
recursive operator O such that every function in U is everywhere O-compressed.

Consequently, function classes that are reliably identifiable on the setR have the property that every function of the
class does possess a fastest program modulo a general recursive operator, where “fastest program modulo a general
recursive operator O” is formalized by the notion of O-compression index.

We finish this section with the remark that further a posteriori characterizations were achieved. The reader is
encouraged to consult Zeugmann [118,121] for further details.

In the following section we continue with the consistency phenomenon. As we shall see, some of the
characterizations obtained above turn out to be helpful to resolve the remaining open problems.

7. Learning and consistency — part II

The main goal of this section is a thorough study of the learning power of the different models of consistent learning
with and without δ-delay. As we have seen above, certain additional information can help to learn the whole class of
recursive functions consistently without δ-delay, i.e., CONS+

= ℘(R) (cf. Theorem 32) — whereas we have not
yet studied the exact effect of omitting additional information in CONSδ-learning. So it is only natural to analyze the
learning power of the different CONSδ-models more thoroughly. We start with δ = 0. In connection with Theorem 30
the following result actually states that the demand to learn consistently is a severe restriction to the learning power.

Theorem 39 (Barzdin [12], Wiehagen [109]). CONS ⊂ IT

Proof. CONS ⊆ IT follows from the fact that an iterative strategy can recompute all values seen so far from the
hypothesis it receives as input and then take the previous values and the new value to simulate the consistent strategy.
We omit the details.

For showing that IT \ CONS 6= ∅, we use the following class U = { f ∈ R | f = α j p, α ∈ N∗, j ≥ 2, p ∈

R{0,1}, ϕ j = f }, where ϕ ∈ Göd.
We set S0( f ) = S(0, f (0)) = f (0) and for n ≥ 1 we define

S(k, n,m) =

m, if m ≥ 2
k , if k ≥ 2 and m < 2
0 , otherwise.
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By construction, Sn( f ) is equal to the last value f (x) ≥ 2 in ( f (0), . . . , f (n)) and 0, if no such value exists. Thus,
the definition of the class U directly implies U ∈ IT ϕ(S).

It remains to show that U /∈ CONS. We need the observation that for every α ∈ N∗, there is an f ∈ U such that
α v f . Indeed an implicit use of the fixed point theorem (cf., e.g., Smith [99]) yields that for every α ∈ N∗ and every
p ∈ R{0,1}, there is a j ≥ 2 such that ϕ j = α j p.

Now suppose that there is a strategy S ∈ P such that U ∈ CONSϕ(S). The observation made directly implies
S ∈ R and for every α ∈ N∗, α v ϕS(α). Thus, on every α ∈ N∗, S always computes a consistent hypothesis. Then,
again by an implicit use of the fixed point theorem, let j ≥ 2 be any ϕ-program of the function f defined as follows:
f (0) = j , and for any n ∈ N,

f (n + 1) =

{
0, if S( f n0) 6= S( f n)

1, if S( f n0) = S( f n) and S( f n1) 6= S( f n).

In accordance with the observation made above and the assumption that S is consistent, one immediately verifies that
S( f n0) 6= S( f n) or S( f n1) 6= S( f n) for any n ∈ N. Therefore the function f is everywhere defined and we have
f ∈ U . On the other hand, the strategy S changes its mind infinitely often when successively fed f , a contradiction to
U ∈ CONSϕ(S). �

As we have seen, learning in the limit is insensitive with respect to the requirement to learn exclusively with
recursive strategies (cf. Theorem 16). On the other hand, consistency is a common requirement in PAC learning,
machine learning and statistical learning (cf., e.g., [8,85,108]). Therefore, it is natural to ask whether or not the power
of consistent learning algorithms further decreases if one restricts the notion of learning algorithms to the set of
recursive strategies. The answer to this question is provided by our next theorem.

Theorem 40 (Wiehagen and Zeugmann [116]). T - CONS ⊂ R- CONS ⊂ CONS .

Proof. By definition T - CONS ⊆ R- CONS ⊆ CONS. Next we show that Usd ∈ R- CONS \ T - CONS.
Obviously, Usd ∈ R- CONSϕ(S) by the strategy S( f n) = f (0) for all n ∈ N .

Now suppose that Usd ∈ T - CONS. Since U0 ∈ T - CONS and T - CONS is closed under union (cf. Theorem 36),
this would directly imply that U0 ∪ Usd ∈ T - CONS, a contradiction to Theorem 19. Thus T - CONS ⊂ R- CONS.

For the proof of CONS \ R- CONS 6= ∅ we use a class similar to the class above, namely U = { f | f ∈

R, either ϕ f (0) = f or ϕ f (1) = f }. First we show that U ∈ CONS. The desired strategy is defined as follows. Let
f ∈ R and n ∈ N.

S( f n) = “Compute in parallel ϕ f (0)(x) and ϕ f (1)(x) for all x ≤ n until (A) or (B) happens.
(A) ϕ f (0)(x) = f (x) for all x ≤ n.
(B) ϕ f (1)(x) = f (x) for all x ≤ n.

If (A) happens first, then output f (0). If (B) happens first, then output f (1). If neither (A) nor (B) happens,
then S( f n) is not defined.”

By the definition of U , it is obvious that S( f n) is defined for all f ∈ U and all n ∈ N. Moreover, S is clearly consistent.
Hence, it suffices to prove that (S( f n))n∈N converges for all f ∈ U . But this is also an immediate consequence of
the definition of U , since either ϕ f (0) 6= f or ϕ f (1) 6= f . Hence S cannot oscillate infinitely often between f (0) and
f (1). Consequently, U ∈ CONSϕ(S).

Next we show that U /∈ R- CONS. Suppose there is a strategy S ∈ R such that U ∈ R- CONSϕ(S). Applying
Smullyan’s Recursion Theorem [102], we construct a function f ∈ U such that either S( f n) 6= S( f n+1) for all
n ∈ N or ϕS( f x )(y) 6= f (y) for some x, y ∈ N with y ≤ x . Since both cases yield a contradiction to the definition
of R- CONS, we are done. The desired function f is defined as follows. Let h and s be two recursive functions such
that for all i, j ∈ N, ϕh(i, j)(0) = ϕs(i, j)(0) = i and ϕh(i, j)(1) = ϕs(i, j)(1) = j . For any i, j ∈ N, x ≥ 2 we proceed
inductively.

Suspend the definition of ϕs(i, j). Try to define ϕh(i, j) for more and more arguments via the following procedure.

(T) Test whether or not (A) or (B) happens (this can be effectively checked, since S ∈ R):
(A) S(ϕx

h(i, j)0) 6= S(ϕx
h(i, j)),

(B) S(ϕx
h(i, j)1) 6= S(ϕx

h(i, j)).
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If (A) happens, then let ϕh(i, j)(x + 1) = 0, let x := x + 1, and goto (T).
In case (B) happens, set ϕh(i, j)(x + 1) = 1, let x := x + 1, and goto (T).
If neither (A) nor (B) happens, then define ϕh(i, j)(x ′) = 0 for all x ′ > x , and goto (∗).

(∗) Set ϕs(i, j)(n) = ϕh(i, j)(n) for all n ≤ x , and ϕs(i, j)(x ′) = 1 for all x ′ > x .

By Smullyan’s Recursion Theorem, there are numbers i and j such that ϕi = ϕh(i, j) and ϕ j = ϕs(i, j). Now we
distinguish the following cases.

Case 1. The loop in (T) is never left.
Then we directly obtain that ϕi ∈ U , since ϕ j = i j is just a finite function while ϕi ∈ R. Moreover, in accordance

with the definition of the loop (T), on input ϕn
i the strategy S changes its mind for all n > 0.

Case 2. The loop in (T) is left.
Then there exists an x such that S(ϕx

h(i, j)0) = S(ϕx
h(i, j)1). Hence S(ϕx+1

i ) = S(ϕx+1
j ), since ϕh(i, j) = ϕi ,

ϕs(i, j) = ϕ j , ϕi (n) = ϕ j (n) for all n ≤ x by (∗), as well as ϕi (x + 1) = 0 and ϕ j (x + 1) = 1. Furthermore, ϕi ,
ϕ j ∈ R. Since ϕi (x + 1) 6= ϕ j (x + 1), we get ϕi 6= ϕ j . On the other hand, ϕi (0) = i and ϕ j (1) = j . Consequently,
both functions ϕi and ϕ j belong to U . But S(ϕx+1

i ) = S(ϕx+1
j ) and ϕi (x + 1) 6= ϕ j (x + 1), hence S does not work

consistently on input ϕx+1
i or ϕx+1

j . This contradiction completes the proof. �

Using similar ideas as above this theorem can be generalized as follows.

Theorem 41 (Akama and Zeugmann [3]). T - CONSδ ⊂ R- CONSδ ⊂ CONSδ for all δ ∈ N.

The next result provides a more subtle insight into the difference in power between T - CONS and R- CONS.
Assertion (1) was shown by Wiehagen and Liepe [114] and Assertion (2) was proved in Wiehagen and
Zeugmann [116].

Theorem 42. (1) FIN # T - CONS
(2) FIN ⊂ R- CONS.

Proof. For proving Assertion (1) note that we obviously have Usd ∈ FIN . But Usd /∈ T - CONS (see the proof
of Theorem 40), and thus FIN \ T - CONS 6= ∅. Furthermore, by Theorem 12 we have U(ϕ,Φ) ∈ T - CONS for
every complexity measure (ϕ,Φ). It remains to argue that U(ϕ,Φ) /∈ FIN . But this is obvious at least for complexity
measures satisfying Property ext via Theorem 17. Thus, T - CONS \ FIN 6= ∅ and Assertion (1) follows.

Next, we prove Assertion (2). Since T - CONS ⊆ R- CONS, R- CONS \ FIN 6= ∅ is an immediate
consequence of (1). The proof of FIN ⊆ R- CONS mainly relies on the decidability of the convergence of any
finite learning algorithm. Let U ∈ FIN , and let S be any strategy witnessing U ∈ FIN ϕ(S). Furthermore, let s ∈ R
be any function such that ϕs(α) = α0∞ for all α ∈ N∗. The desired strategy Ŝ is defined as follows. Let f ∈ R and
n ∈ N. Then

Ŝ( f n) = “In parallel, try to compute S( f 0), . . . , S( f n) for precisely n steps. Let k ≥ 1 be the least number such that
all values S( f 0), . . . , S( f k) turn out to be defined, and S( f k−1) = S( f k).
In case this k is found, output S( f k). Otherwise, output s( f n).”

It remains to show that U ∈ R- CONS(Ŝ). Obviously, Ŝ ∈ R. Now let f ∈ U . We have to show that Ŝ consistently
learns f .

Claim 1. Ŝ learns f .

Since f ∈ U , the strategy S is defined for all inputs f n , n ∈ N. Moreover, since S finitely learns f , the
sequence (S( f n))n∈N finitely converges to a ϕ-program of f . Hence, Ŝ eventually has to find the least k such that
S( f k−1) = S( f k), and all values S( f 0), . . . , S( f k) are defined. By the definition of FIN , ϕS( f k ) = f . Hence, Ŝ
learns f .

Claim 2. For all f ∈ U and n ∈ N, Ŝ( f n) is a consistent hypothesis.

Clearly, as long as Ŝ outputs s( f n), it is consistent. Suppose, Ŝ outputs S( f k) for the first time. Then it has verified
that S( f k−1) = S( f k). Since f ∈ U , and U ∈ FIN ϕ(S), this directly implies ϕS( f k ) = f . Therefore, Ŝ again outputs
a consistent hypothesis. Since this hypothesis is repeated in any subsequent learning step, the claim is proved. �
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A natural question arising is whether or not the introduction of δ-delay to consistent learning yields an advantage
with respect to the learning power of the defined learning types in dependence on δ.

Theorem 43. The following statements hold for all δ ∈ N:

(1) T - CONSδ ⊂ T - CONSδ+1
⊂ T-REL,

(2) NUM ∩ ℘(R{0,1}) = T - CONSδ ∩ ℘(R{0,1}) = T - CONSδ+1
∩ ℘(R{0,1}) = T-REL ∩ ℘(R{0,1}),

(3) T - CONSδ ∩ ℘(R{0,1}) ⊂ R-REL ∩ ℘(R{0,1}).

Proof. We first prove Assertion (1). Let δ ∈ N be arbitrarily fixed. Then by Definition 15 we obviously have
T - CONSδ ⊆ T - CONSδ+1. For showing T - CONSδ+1

\ T - CONSδ 6= ∅ we use the following class. Let (ϕ,Φ)
be any complexity measure; we set

U (ϕ,Φ)δ+1 = { f | f ∈ R, ϕ f (0) = f, ∀x[Φ f (0)(x) ≤ f (x + δ + 1)]}.

Claim 1. U (ϕ,Φ)δ+1 ∈ T - CONSδ+1.

The desired strategy S is defined as follows. Let g ∈ R be the function defined in the sufficiency proof of
Theorem 34. For all f ∈ R and all n ∈ N we set

S( f n) =

 f (0), if n ≤ δ or n > δ and Φ f (0)(y) ≤ f (y + δ + 1)
and ϕ f (0)(y) = f (y) for all y ≤ n −· δ −· 1

g( f n), otherwise.

Now, by construction, one easily verifies U (ϕ,Φ)δ+1 ∈ T - CONSδ+1(S). This proves Claim 1.

Claim 2. U (ϕ,Φ)δ+1 /∈ T - CONSδ .

Suppose the converse. Then there must be a strategy S ∈ R such that U (ϕ,Φ)δ+1 ∈ T - CONSδ(S). We continue by

constructing a function ϕi∗ ∈ U (ϕ,Φ)δ+1 on which S fails.
Furthermore, let r ∈ R be such that Φi = ϕr(i) for all i ∈ N and r is strongly monotonously increasing, i.e.,

r(i) < r(i + 1) for all i ∈ N. Then Val(r) is recursive (cf. Rogers [97]). Choose s ∈ R such that for all j ∈ N and
for all x ≤ δ we have

ϕs( j)(x) =

{
i, if there is an i with r(i) = j
0, otherwise.

For the further definition of ϕs( j) we also use δ + 1 arguments in every step. For x = 0, δ + 1, 2δ + 2, 3δ + 3, . . .
we set

ϕs( j)(x + δ + 1) = ϕ j (x)+ 1

·

·

·

ϕs( j)(x + 2δ + 1) = ϕ j (x + δ)+ 1

provided ϕ j (x), ϕ j (x + 1), . . . , ϕ j (x + δ) are all defined, ϕx+δ
s( j) is defined and

S
(
ϕx+δ

s( j)

)
= S

(
〈(ϕs( j)(0), . . . , ϕs( j)(x + δ), ϕ j (x), . . . , ϕ j (x + δ))〉

)
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and

ϕs( j)(x + δ + 1) = ϕ j (x)

·

·

·

ϕs( j)(x + 2δ + 1) = ϕ j (x + δ)

provided ϕ j (x), ϕ j (x + 1), . . . , ϕ j (x + δ) are all defined, ϕx+δ
s( j) is defined and

S
(
ϕx+δ

s( j)

)
6= S

(
〈(ϕs( j)(0), . . . , ϕs( j)(x + δ), ϕ j (x), . . . , ϕ j (x + δ))〉

)
.

Otherwise, ϕs( j)(x + δ + 1), . . . , ϕs( j)(x + 2δ + 1) remain undefined.
By the fixed point theorem (cf. Rogers [97]) there exists a number i∗ such that ϕs(r(i∗)) = ϕi∗ .

Next, we show that ϕi∗ ∈ U (ϕ,Φ)δ+1 . This is done inductively. For the induction base, by construction we have
ϕi∗(0) = · · · = ϕi∗(δ) = i∗. Hence, Φi∗(0), . . . ,Φi∗(δ) are all defined, too. Therefore, we know that ϕδs(r(i∗)) is
defined and so either ϕs(r(i∗))(δ + 1) = Φi∗(0)+ 1, . . . , ϕs(r(i∗))(2δ + 1) = Φi∗(δ)+ 1 provided

S
(
ϕδs(r(i∗))

)
= S

(
〈(ϕs((r(i∗))(0), . . . , ϕs((r(i∗))(δ),Φi∗(0), . . . ,Φi∗(δ))〉

)
or ϕs(r(i∗))(δ + 1) = Φi∗(0), . . . , ϕs(r(i∗))(2δ + 1) = Φi∗(δ) if

S
(
ϕδs(r(i∗))

)
6= S

(
〈(ϕs((r(i∗))(0), . . . , ϕs((r(i∗))(δ),Φi∗(0), . . . ,Φi∗(δ))〉

)
.

Note that one of these cases must happen, since otherwise S would not be T -consistent with δ-delay.
Hence, Φi∗(0) ≤ ϕi∗(δ + 1), . . . ,Φi∗(δ) ≤ ϕi∗(2δ + 1), since ϕs(r(i∗)) = ϕi∗ . So we know that ϕi∗(δ +

1), . . . , ϕi∗(2δ + 1) as well as Φi∗(δ + 1), . . . ,Φi∗(2δ + 1) are all defined. This completes the induction base.
Consequently, we have the induction hypothesis that for some x = 0, δ + 1, 2δ + 2, 3δ + 3, . . . the values

ϕi∗(z) are defined and Φi∗(z) ≤ ϕi∗(z + δ + 1) for all z ≤ x + δ. This of course implies ϕx+δ
s(r(i∗)) is defined, too.

The induction step is done from x to x + δ + 1. First, we either have ϕs(r(i∗))(x + δ + 1) = Φi∗(x) + 1, . . . ,
ϕs(r(i∗))(x + 2δ + 1) = Φi∗(x + δ)+ 1 provided

S
(
ϕx+δ

s(r(i∗))

)
= S

(
〈(ϕs(r(i∗))(0), . . . , ϕs(r(i∗))(x + δ),Φi∗(x), . . . ,Φi∗(x + δ))〉

)
or ϕs(r(i∗))(x + δ + 1) = Φi∗(x), . . . , ϕs(r(i∗))(x + 2δ + 1) = Φi∗(x + δ) if

S
(
ϕx+δ

s(r(i∗))

)
6= S

(
〈(ϕs(r(i∗))(0), . . . , ϕs(r(i∗))(x + δ),Φi∗(x), . . . ,Φi∗(x + δ))〉

)
.

Note that one of these cases must happen, since otherwise S would not be T -consistent with δ-delay.
Therefore, ϕi∗(x + δ + 1), . . . , ϕi∗(x + 2δ + 1) are all defined and Φi∗(x) ≤ ϕi∗(x + δ + 1), . . . ,Φi∗(x + δ) ≤

ϕi∗(x + 2δ + 1).
Now we also know that Φi∗(x +δ+1), . . . , Φi∗(x +2δ+1) are all defined. Thus, we have shown that ϕi∗ ∈ U (ϕ,Φ)δ+1 .

Finally, by construction we directly obtain that S performs infinitely many mind changes when successively fed ϕi∗ ,
a contradiction to U (ϕ,Φ)δ+1 ∈ T - CONSδ(S). This proves Claim 2.

Taking into account that, for any f ∈ R, a strategy working T -consistently with δ-delay converges when
successively fed f iff it learns f , we directly get T - CONSδ ⊆ T-REL for every δ ∈ N. Now T - CONSδ ⊂

T - CONSδ+1
⊆ T-REL for all δ ∈ N implies T - CONSδ ⊂ T-REL for all δ ∈ N. This proves Assertion (1).

For Assertion (2) we only have to show that T-REL ∩ ℘(R{0,1}) ⊆ NUM ∩ ℘(R{0,1}). This result was proved
by Grabowski [55], so we only sketch the proof here. For that purpose let U ∈ T-REL ∩ ℘(R{0,1}). By Theorem 37
there is a general recursive operator O such that U ⊆ CO, that means

U ⊆ {ϕi | ∀
∞x[Φi (x) ≤ O(ϕi , x)]} ∩R{0,1} .
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Like every general recursive operator, O can be bounded by a monotone general recursive operator Ô, i.e., O( f, x) ≤

Ô( f, x) for all f ∈ R and all x ∈ N, where monotonicity of Ô means that ∀
∞x[Ô( f, x) ≤ Ô(g, x)] for all f, g ∈ R

satisfying ∀
∞x[ f (x) ≤ g(x)].

In particular, for any ϕi ∈ U ⊆ R{0,1} we have ∀x[ϕi (x) ≤ 1] and thus ∀
∞x[O(ϕi , x) ≤ Ô(1∞, x)]. Therefore

U ⊆ {ϕi | ∀
∞x[Φi (x) ≤ Ô(1∞, x)]} ∩R{0,1} .

Since Ô is general recursive, the function t defined by t (x) = Ô(1∞, x) for all x is recursive. Applying Theorem 4
we can conclude U ∈ NUM. This proves Assertion (2).

Finally, Assertion (3) is an immediate consequence of Assertion (2) and Theorems 2 and 3 from Stephan and
Zeugmann [105] which together show that Umahp ∈ R-REL \NUM. Consequently, since Umahp ⊆ R{0,1} we have
NUM ∩ ℘(R{0,1}) ⊂ R-REL ∩ ℘(R{0,1}). This completes the proof. �

In particular, we have seen that Umahp ∈ R-REL and thus located the appropriate learning model for inferring
all functions in Umahp. Does this result also extend to the class Uahp? Interestingly, now the answer depends on the
underlying complexity measure. As shown in Stephan and Zeugmann [105], there are “natural” complexity measures
such that Uahp /∈ BC. On the other hand, there are also complexity measures such that Uahp ∈ LIM.

Together with Theorem 36 the proof of Theorem 43 allows for a nice corollary.

Corollary 44. For all δ ∈ N we have:

(1) CONSδ ⊂ CONSδ+1,
(2) R- CONSδ ⊂ R- CONSδ+1.

Proof. We use U (ϕ,Φ)δ+1 from the proof of Theorem 43 and the class U0. Clearly, U (ϕ,Φ)δ+1 , U0 ∈ T - CONSδ+1 and

therefore, by Theorem 36 we also have U (ϕ,Φ)δ+1 ∪ U0 ∈ T - CONSδ+1. Consequently, U (ϕ,Φ)δ+1 ∪ U0 ∈ R- CONSδ+1

and U (ϕ,Φ)δ+1 ∪U0 ∈ CONSδ+1. It remains to argue that U (ϕ,Φ)δ+1 ∪U0 /∈ CONSδ . This will suffice, sinceR- CONSδ ⊆

CONSδ .
Suppose the converse, i.e., there is a strategy S ∈ P such that U (ϕ,Φ)δ+1 ∪ U0 ∈ CONSδ(S). By the choice of U0 we

can then directly conclude that S ∈ R and that S has to work consistently with δ-delay on every f n , where f ∈ R
and n ∈ N. But this would imply U (ϕ,Φ)δ+1 ∪ U0 ∈ T - CONSδ(S), a contradiction to U (ϕ,Φ)δ+1 /∈ T - CONSδ . �

A closer look at the proof above shows that we have even proved the following corollary shedding some light on
the power of our notion of δ-delay.

Corollary 45. T - CONSδ+1
\ CONSδ 6= ∅ for all δ ∈ N.

The situation is comparable to Lange and Zeugmann’s [76] bounded example memory learnability BEMk of
languages from positive data, where BEMk yields an infinite hierarchy such that

⋃
k∈N BEMk is a proper subclass

of the class of all indexed families of recursive languages that can be conservatively learned.
On the one hand, Corollary 44 shows the strength of δ-delay. On the other hand, the δ-delay cannot compensate all

the learning power that is provided by the different consistency demands on the domain of the strategies.

Theorem 46. R- CONS \ T - CONSδ 6= ∅ for all δ ∈ N.

Proof. The proof can be done by using the class Usd of self-describing functions. Obviously, Usd ∈ R- CONS(S) as
witnessed by the strategy S( f n) = f (0) for all f ∈ R and all n ∈ N. Now assuming Usd ∈ T - CONSδ for some
δ ∈ N would directly imply that Usd ∪ U0 ∈ T - CONSδ for the same δ by Theorem 36. But this is a contradiction to
Usd ∪ U0 /∈ BC (see Theorem 19). �

Finally, combining Corollary 45 and Theorem 46, we get the following incomparabilities.

Corollary 47. T - CONSδ # CONSµ and T - CONSδ # R- CONSµ for all δ, µ ∈ N provided δ > µ.
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Fig. 3. Hierarchies of consistent learning with δ-delay.

Fig. 3 summarizes the achieved separations and equivalences of the various coherent and consistent learning models
investigated in this paper.

Another interesting relaxation of the consistency demand was proposed by Wiehagen [111] — he called it
conformity.

Definition 22 (Wiehagen [111]). Let U ⊆ R, and let ψ ∈ P2. The class U is called conformly learnable in the limit
with respect to ψ if there is a strategy S ∈ P such that

(1) U ∈ LIMψ (S),
(2) [either ψS( f n)(x)↑ or ψS( f n)(x) = f (x)] for all f ∈ U , all n ∈ N and all x ≤ n.

CONFψ (S), CONFψ and CONF are defined analogously to the above.

Now one can prove the following theorem in which the second proper inclusion intuitively seems to be the more
surprising one.

Theorem 48 (Wiehagen [111]). CONS ⊂ CONF ⊂ LIM

Proof. Clearly, we have CONS ⊆ CONF ⊆ LIM. For showing LIM\CONF 6= ∅ only one new idea is needed.
We use the class from the proof of Theorem 39, i.e., U = { f ∈ R | f = α j p, α ∈ N∗, j ≥ 2, p ∈ R{0,1}, ϕ j = f }.
Suppose U ∈ CONFϕ(S). Then we directly get S ∈ R. Using the fixed point theorem we obtain a number j which
is a ϕ-program of the following function f .

f (0) = j,

f (n + 1) =

0, if S( f n) 6= S( f n0)
1, if S( f n) = S( f n0) and S( f n) 6= S( f n1),
1, if S( f n) = S( f n0) = S( f n1).

By construction we obtain f ∈ U . Since S is supposed to be conform, if the case S( f n) = S( f n0) = S( f n1)
occurs, we see that ϕS( f n1)(n + 1)must diverge. Consequently, ϕS( f n1)(n + 1) 6= f . Hence, the sequence (S( f n))n∈N
contains infinitely many mind changes or infinitely many wrong hypotheses. Since f ∈ U we get a contradiction to
U ∈ CONFϕ(S), and thus CONF ⊂ LIM must hold.

For the remaining part CONF \ CONS 6= ∅ we refer the reader to [111]. �

The second inclusion in the theorem above seems to be of great interest for the philosophy of science: it says that,
when learning in the limit, strategies using conjectures which convergently contradict known data may have a strictly
greater inference power than strategies whose conjectures never contradict known data convergently.

The same insight is obtained in another variation of the theme. Fulk [48] also studied conform learning by varying
the set of admissible strategies in the same way as we did for consistent learning; thus obtaining in particular the
learning type T - CONF . Then the following theorem was shown.
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Theorem 49 (Fulk [48]). T - CONF = T - CONS

Comparing this result with T - CONSδ ⊂ T - CONSδ+1 for all δ ∈ N points to the same phenomenon, i.e.,
allowing a strategy to use conjectures which convergently contradict known data may enlarge its learning power while
demanding to output hypotheses never contradicting known data convergently may not.

Further insight into the problem of what makes some learning types more powerful than others is obtained by
characterizing them in terms of computable numberings. This is done in the next section.

8. Characterizations in terms of computable numberings

In this survey, we have already seen several characterizations of learning types in terms of computable numberings.
We started with the characterization of R- T OTAL (see Theorem 2), then presented a characterization for T OTAL
(see Theorem 10), and provided also a characterization of T - CONSarb in terms of measurable numberings (see
Theorem 12). So far all these characterizations showed that for each learning type LT considered and each class
U ∈ LT there is a non-Gödel numbering ψ such that U is learnable in the sense of LT with respect to ψ by an
enumerative inference strategy.

The technical difficulty we have to overcome is provided by Lemma 3. For every class U /∈ NUM there are only
hypothesis spaces ψ such that U ⊆ Pψ implies the undecidability of the halting problem with respect to ψ .

Lemma 3. Wiehagen and Zeugmann [115]] Let U ⊆ R and let U /∈ NUM. Then, for any numbering ψ ∈ P2

satisfying U ⊆ Pψ , the halting problem with respect to ψ is undecidable.

Proof. Let U ⊆ R and U /∈ NUM. Furthermore, let ψ ∈ P2 be any numbering such that U ⊆ Pψ . Suppose the
halting problem with respect to ψ is decidable. So there exists a function h ∈ R2 such that for all i, x ∈ N, h(i, x) = 1
iff ψi (x) is defined. Then define a numbering ψ̃ by effectively filling out the “gaps” in ψ as follows:

ψ̃i (x) =

{
ψi (x), if h(i, x) = 1
0, otherwise.

Obviously, for any i ∈ N, if ψi ∈ R then ψ̃i = ψi . Hence U ⊆ Pψ̃ . However, ψ̃ ∈ R2 and consequently, U ⊆ Pψ̃
implies U ∈ NUM, a contradiction. �

So, it is only natural to ask whether or not we can show an analogous result for every learning type. What we would
like to present in this chapter is substantial evidence for an affirmative answer. Besides its epistemological importance,
these characterizations will also provide a deeper insight into the problem what kind of properties “inference-friendly”
non-Gödel numberings ψ should have in order to make Rψ learnable.

One idea may be derived from the proof of R ∈ CONS+ (cf. Theorem 32, Assertion (2)). Here the additional
information allowed for restricting the hypothesis search to a finite subspace of ϕ. If we can limiting recursively
compute such additional information, then we can use essentially the same proof technique. Note that this idea goes
back to Barzdin and Podnieks [20].

Theorem 50 (Wiehagen [111]). Let U ⊆ R, then we have:

(1) U ∈ LIM if and only if there exists a limiting recursive functional B such that U ⊆ dom(B) and B( f ) ≥ minϕ f
for all f ∈ U .

(2) U ∈ CONS if and only if there exists a function B ∈ P such that for every f ∈ U the following conditions are
satisfied:

(A) There is a j ≥ minϕ f with B( f n) = j for all but finitely many n ∈ N.
(B) B( f n) is defined for every n ∈ N and there is an i ≤ B( f n) such that ϕi =n f .

In the second version we cannot restrict the hypothesis search to a finite subspace of ϕ. Instead, the classes to
learn can be embedded into a computable numbering ψ such that for computing the actual hypothesis quite often only
finitely many elements of the computable numbering ψ have to be considered. Note that we have already provided
a theorem that uses precisely this idea, i.e., the characterization of T OTAL (cf. Theorem 10). Using similar ideas
Wiehagen [111] showed the following theorem.
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Theorem 51 (Wiehagen [111]). Let U ⊆ R, then we have:

(1) U ∈ LIM if and only if there exists a numbering ψ ∈ P2 such that the following conditions are satisfied:
(A) U ⊆ Pψ
(B) There is a function g ∈ R such that for every function f ∈ U the set of all numbers i with ψi =g(i) f is finite.

(2) U ∈ BC if and only if there exists a numbering ψ ∈ P2 such that the following conditions are satisfied:
(A) U ⊆ Pψ
(B) There is a function r ∈ R such that for every function f ∈ U and almost all i , ψi =r(i) f implies ψi = f .

Proof. We only prove Assertion (2) here, since Assertion (1) can be shown mutatis mutandis as Theorem 10.
In order to show the necessity part of (2) let U ∈ BCϕ(S), where, without loss of generality, S ∈ R (cf.

Theorem 24). We define M to be the set of all pairs (z, n) such that

• for all x ≤ n, ϕz(x) is defined, and
• S(ϕn

z ) = z.

Let M be enumerated without repetitions by d ∈ R. For i, x ∈ N, d(i) = (z, n), we define ψ(i, x) = ϕz(x) and
r(i) = n.
U ⊆ Pψ is obvious. Let f ∈ U and let n̂ be such that ϕS( f n) = f for all n ≥ n̂. Then ψi =r(i) f and r(i) ≥ n̂

implies ψi = f . Since there are only finitely many numbers i such that ψi =r(i) f and r(i) < n̂, Condition (B)
follows.

For showing the sufficiency part of (2) we have to define a strategy S such that U ∈ BCϕ(S). Let amal be the
amalgamation function defined in the proof of Theorem 32. Furthermore, let c ∈ R be a compiler function such that
ψi = ϕc(i) for all i ∈ N. For any input f n we define the set

M( f n) = {i | i ∈ N, i ≤ n, r(i) ≤ n

∧ ∀x[x ≤ r(i) → Φc(i)(x) ≤ n ∧ ψi =r(i) f ]

∧ ∀x[n ≥ x > r(i) ∧ Φc(i)(x) ≤ n → ψi (x) = f (x)]},

where r ∈ R is the function from Condition (B). Clearly, M( f n) is finite and computable for every f n . Again, we
choose g ∈ R such that ϕg(〈α〉)(x) = yx for every tuple α ∈ N∗, α = (y0, . . . , yn) and all x ≤ n.

We define the strategy S as follows. If M( f n) = ∅ then we set S( f n) = g( f n). If M( f n) 6= ∅, we set
S( f n) = amal({c(i) | i ∈ M( f n)}).

It remains to show that S learns every function f ∈ U behaviorally correctly. By construction and Condition (B)
we know that for almost all n the set M( f n) contains only ψ-programs i such that ψi ⊆ f . For sufficiently large n,
we also know by Condition (A) that M( f n) contains at least one ψ-program i such that ψi = f . Consequently, for all
sufficiently large n, S( f n) is a ϕ-program for f , and thus U ∈ BCϕ(S). Note that S outputs infinitely many different
ϕ-programs for f if there are infinitely many ψ-programs for f . �

The third version of characterizations in terms of computable numberings shows that learnable functions classes are
embeddable into numberings ψ possessing some effective distinguishability property. Informally, ψ has an effective
distinguishability property if there is an effective method to distinguish ψi and ψ j for every i, j provided ψi 6= ψ j .

The following characterization is due to Wiehagen [112].

Theorem 52 (Wiehagen [111,112]). Let U ⊆ R, then we have: U ∈ LIM if and only if there exists a numbering
ψ ∈ P2 such that

(1) U ⊆ Pψ , and
(2) there is a function d ∈ R2 such that ψi 6=d(i, j) ψ j for all i, j ∈ N with i 6= j .

Proof. Necessity. Let U ∈ LIM; then there exists a numbering ϕ ∈ P2 and a strategy S ∈ P such that
U ∈ LIMϕ(S).

Let M denote the set of all pairs (z, n) such that

• for all x ≤ n, ϕz(x) is defined, and
• S(ϕn−1

z ) 6= S(ϕn
z ) = z.
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Intuitively, M corresponds to the set of all initial segments ϕn
z on which after a (perhaps last) mind change (namely

S(ϕn−1
z ) 6= S(ϕn

z )) the strategy S outputs a reasonable hypothesis.
Clearly, M is recursively enumerable. Let M be enumerated by e ∈ R without repetition. Now we are ready to

define the desired numbering ψ . For any i such that e(i) = (z, n), we set:

ψi (x) =


ϕz(x), if x ≤ n
ϕz(x), if x > n and for every y with n < y ≤ x,

ϕz(y) is defined and S(ϕy
z ) = z

undefined, otherwise.

Next, let g ∈ R be chosen such that g(i) = n for every i with e(i) = (z, n). We define d(i, j) = max{g(i), g( j)}.
It remains to show that Conditions (1) and (2) are satisfied.

Claim 1. U ⊆ Pψ .

Let f ∈ U ; we have to show that there is an i such that ψi = f . Since f ∈ U , there exists a least n such that
S( f n) = S( f n+m) = z for all m ∈ N. Then (z, n) ∈ M and since S has converged and since U ∈ LIMϕ(S), we also
have ψi = f . Thus, Claim 1 is shown.

Claim 2. ψi 6=d(i, j) ψ j for all i, j ∈ N with i 6= j .

Let i 6= j and suppose that ψi =d(i, j) ψ j . Without loss of generality we can assume that g(i) < g( j). By the
definition of M it follows that ψ j (x) is defined for all x ≤ g( j) and thus ψi (x) is defined for all x ≤ g( j), too.

By the definition of ψ we obtain that S(ψg( j)−1
i ) = S(ψg( j)

i ). On the other hand, by the definition of M we get that

S(ψg( j)−1
j ) 6= S(ψg( j)

j ). But this is a contradiction to ψi =d(i, j) ψ j . Thus, Claim 2 is proved and the necessity part
of the theorem follows.

Sufficiency. We define the desired strategy as follows.

S( f 0) = 0
S( f n) = “Compute i = S( f n−1). Check within at most n steps of computation whether or not there is a j > i such

that d(i, j) ≤ n and ψi =d(i, j) f . If such a j is found, output i + 1.
Otherwise output i .”

We have to show that U ∈ LIMψ (S). Let f ∈ U , let n ∈ N+ and let i = S( f n−1). Suppose there is a j > i such
that d(i, j) ≤ n and ψi =d(i, j) f . Then, by Condition (2), we know that ψ j 6=d(i, j) ψi . Consequently, ψi 6= f . Thus,
choosing a new hypothesis is justified. Moreover, this observation also shows that the strategy S will never abandon a
correct hypothesis i .

So, it remains to show that i is abandoned if ψi 6= f . Fix any i with ψi 6= f . Then, by Condition (1), there is a
j > i (namely ψ j = f ) such that d(i, j) ≤ n, for n large enough, and ψ j =d(i, j) f . Thus, j will be eventually found
and the strategy is forced to change the provably wrong hypothesis i to i + 1.

Putting it all together, we get that for every f ∈ U the strategy S converges to the minimal (and only!) ψ-number
of f . This shows that U ∈ LIMψ (S). �

This theorem nicely shows that requiring a learning strategy to exclusively output programs for recursive functions
is by no means the only way to realize Popper’s [95] refutability principle. Instead, Theorem 52 leads to the crucial
notion of semantic finiteness. Intuitively, a semantically finite strategy is never allowed to reject a hypothesis that is
correct for the target function. Hence, when learning semantically finitely, a strategy should have a serious reason
to reject its current hypothesis. As the proof of Theorem 52 shows, this reason might be quite different from just
detecting an inconsistency.

Next, we turn our attention to finite learning. As we have already seen, no class U ∈ FIN can contain an
accumulation point (cf. Theorem 17). A closer look at this observation leads to the following characterization ofFIN .

Theorem 53 (Wiehagen [110,112]). Let U ⊆ R, then we have: U ∈ FIN if and only if there exists a numbering
ψ ∈ P2 such that

(1) U ⊆ Pψ , and
(2) there is a function d ∈ R such that ψi 6=d(i) ψ j for all i, j ∈ N with i 6= j .
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Proof. Necessity. Let U ∈ FIN ; then there exists a numbering ϕ ∈ P2 and a strategy S ∈ P such that
U ∈ FIN ϕ(S).

Let M denote the set of all pairs (z, n) such that

• for all x ≤ n, ϕz(x) is defined,
• for all 0 < x < n, S(ϕx−1

z ) 6= S(ϕx
z ), and

• S(ϕn−1
z ) = S(ϕn

z ) = z.

Let M be enumerated by e ∈ R without repetition. For any i such that e(i) = (z, n) we define:

ψi = ϕz and d(i) = n.

Clearly, ψ ∈ P2 and d ∈ R. It remains to show that Conditions (1) and (2) are satisfied.

Claim 1. U ⊆ Pψ .

Let f ∈ U ; we know that { f } ∈ FIN ϕ(S). Thus, there exists an n ∈ N such that S( f x−1) 6= S( f x ) for all
0 < x < n and S( f n−1) = S( f n) = z. By the definition of finite convergence, we can conclude that (S( f n))n∈N has
converged and since { f } ∈ FIN ϕ(S), we know that ϕz = f . Thus, (z, n) ∈ M and by construction there is an i such
that e(i) = (z, n). Hence, ψi = ϕz = f . This proves Claim 1.

Claim 2. ψi 6=d(i) ψ j for all i, j ∈ N with i 6= j .

Let i 6= j and suppose that ψi =d(i) ψ j . Let e(i) = (z, n); by the definition of d we can conclude ψi (x)↓ for all
x = 0, . . . , n. Additionally, by the definition of the relation =m we also have that ψ j (x)↓ for all x = 0, . . . , n. Now
let e( j) = (ẑ, n̂). Since i 6= j and since e enumerates M without repetition, it must hold z 6= ẑ or n 6= n̂.

By construction, S(ψn
i ) = z and since ψi =d(i) ψ j , we also have S(ψn

j ) = z. Thus, z 6= ẑ cannot happen. But

n 6= n̂ cannot happen either, since n is the least number such that S(ψn−1
i ) = S(ψn

i ). Thus i = j , a contradiction.
Claim 1 and 2 together yield the necessity part.
Sufficiency. The desired strategy S is defined as follows. Let f ∈ U and let n ∈ N. We set:

S( f n) = “Check whether there is an i ∈ N such that
• i ≤ n,
• d(i) ≤ n,
• ψi =d(i) f can be verified within n steps of computation.
If such an i is found, let S( f n) = i .
Otherwise, let S( f n) = n.”

Let f ∈ U ; then Condition (1) ensures that there is at least one ψ-program i such that ψi =d(i) f . Furthermore,
Condition (2) guarantees that there is at most one such ψ-program. Since n increases, this ψ-program i will be found
eventually. Consequently, U ∈ FINψ (S) and thus U ∈ FIN . �

Next, we characterize the different versions of consistent learning in terms of computable numberings. As we shall
see, the difference between the different versions of consistent learning can be completely expressed by different
versions of consistency-related decision problems. Therefore, following Wiehagen and Zeugmann [116], next we
define these consistency-related decision problems.

Definition 23. Let ψ ∈ P2 be any numbering and let U ⊆ R. We say that

(1) consistency with respect to ψ is decidable if there exists a predicate cons ∈ R2 such that for each α ∈ N∗ and all
i ∈ N, cons(〈α〉, i) = 1 if and only if α v ψi .

(2) U-consistency with respect to ψ is decidable if there exists a predicate cons ∈ P2 such that for each α ∈ [U] and
all i ∈ N, cons(〈α〉, i) is defined, and cons(〈α〉, i) = 1 if and only if α v ψi .

(3) U-consistency with respect to ψ is R-decidable if there exists a predicate cons ∈ R2 such that for each α ∈ [U]

and all i ∈ N, cons(〈α〉, i) = 1 if and only if α v ψi .

Note that the following proof uses ideas from Wiehagen [110] as well as from [116].

Theorem 54. U ∈ T - CONS iff there is a numbering ψ ∈ P2 such that
(1) U ⊆ Pψ ,
(2) consistency with respect to ψ is decidable.
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Proof. Necessity. Let U ∈ T - CONSϕ(S) where ϕ ∈ P2 is any Gödel numbering and S is a T -consistent strategy.
Let

M = {(z, n) | z, n ∈ N, ϕz(x) is defined for every x ≤ n, S(ϕn
z ) = z}

be recursively enumerated by a function e. Then define a numbering ψ as follows. Let i, x ∈ N, e(i) = (z, n).

ψi (x) =


ϕz(x), if x ≤ n
ϕz(x), if x > n and, for any y ∈ N such that n < y ≤ x,

ϕz(y) is defined and S(ϕy
z ) = z

↑ , otherwise.

For showing (1) let f ∈ U and n, z ∈ N be such that S( f m) = z for any m ≥ n. Clearly, ϕz = f . Furthermore,
(z, n) ∈ M . Let i ∈ N be such that e(i) = (z, n). Then, by definition of ψ, ψi = ϕz = f . Hence U ⊆ Pψ .

In order to prove (2) we define cons ∈ R2 such that for any α ∈ N∗, i ∈ N, cons(〈α〉, i) = 1 iff α v ψi . Let
α = (α0, . . . , αx ) ∈ N∗ and i ∈ N. Let e(i) = (z, n). Then define

cons(〈α〉, i) =


1, if x ≤ n and, for every y ≤ x, αy = ψi (y)
1, if x > n and S(〈α0, . . . , αy〉) = z for every y ∈ N

such that n < y ≤ x
0, otherwise.

Since e(i) = (z, n) ∈ M , by construction we know that ϕz(m) ↓ for all m ≤ n and S(ϕn
z ) = z. Thus, we have

ψi (m) = ϕz(m) for all m ≤ n. Consequently, if x ≤ n, then for all y ≤ x it can be effectively tested whether or not
αy = ψi (y). Furthermore, S ∈ R implies that S(〈α0, . . . , αy〉) can be computed for every y ∈ N such that n < y ≤ x .
Thus, if x > n, the condition S(〈α0, . . . , αy〉) = z can be effectively checked for every y ∈ N such that n < y ≤ x .
Consequently, cons ∈ R2.

Furthermore, it is not hard to see that for every α ∈ N∗, i ∈ N, we have cons(〈α〉, i) = 1 iff α v ψi . This proves
the necessity part.

Sufficiency. Let ψ ∈ P2 be any numbering. Let cons ∈ R2 be such that for all α ∈ N∗ and i ∈ N we have
cons(α, i) = 1 iff α v ψi . Let U ⊆ Pψ . In order to consistently learn any function f ∈ U it suffices to define
S( f n) = min{i | cons( f n, i)}. However, S is undefined if, for f /∈ U , n ∈ N, there is no i ∈ N such that f n

v ψi .
The following more careful definition of S will circumvent this difficulty. Let ϕ ∈ Göd. Let aux ∈ R be such that for
any α ∈ N∗, ϕaux(α) = α0∞. Finally, let c ∈ R be such that for all i ∈ N, ψi = ϕc(i). Then, for any f ∈ R, n ∈ N,
define a strategy S as follows.

S( f n) =

{
c( j), if I = {i | i ≤ n, cons( f n, i) = 1} 6= ∅ and j = min I
aux(f n), if I = ∅.

Clearly, S ∈ R and S outputs only consistent hypotheses. Now let f ∈ U . Then, obviously, (S( f n))n∈N converges to
c(min{i | ψi = f }). Hence, S witnesses U ∈ T - CONSϕ . �

Next, we present our characterization for CONS.

Theorem 55. U ∈ CONS iff there is a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ ,
(2) U-consistency with respect to ψ is decidable.

Finally, we characterize R- CONS.

Theorem 56. U ∈ R- CONS iff there is a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ ,
(2) U-consistency with respect to ψ is R-decidable.
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The proofs of Theorems 55 and 56 are similar to that of Theorem 54.
The above characterizations of T - CONS, CONS andR- CONS as well as the characterization of T - CONSarb

provided in Theorem 12 point out a relation between the problem of deciding consistency and the halting problem.
On the one hand, for any of the learning types LT ∈ {T - CONS, CONS, R- CONS, T - CONSarb

} we have
NUM ⊆ LT (via Theorem 2 and Corollary 13). On the other hand, as shown in Lemma 3, for any class U ⊆ R
outside NUM and any numbering ψ ∈ P2, if U ⊆ Pψ , then the halting problem with respect to ψ is undecidable.

In contrast, for any U ∈ LT \ NUM the corresponding version of consistency with respect to ψ is decidable.
Hence this version of consistency cannot be decided by first deciding the halting problem and second, if possible,
computing the desired values of the function under consideration in order to compare these values with the given
ones. So, though consistency is decidable in the “characteristic” numberings of Theorems 54–56 and 12 it is not
decidable in a “straightforward way.”

9. Further topics

In this section we briefly summarize further research pursued by Rolf Wiehagen and researchers who worked on
similar problems. We start with robust inference.

9.1. Robust learning

For the sake of motivation, let us look at any class U inR- T OTAL. Recalling thatR- T OTAL = NUM we can
think of U as (a subset of) a family (ϕs(i))i∈N for some s ∈ R (cf. Theorem 2). Furthermore, let O be any effective
operator realized by a function g ∈ R such that O(U) ⊆ R (cf. Definition 20). Then we have O(ϕs(i)) = ϕg(s(i)) for
every i ∈ N and thus the family (ϕg(s(i)))i∈N also belongs to NUM and is consequently in R- T OTAL, again by
Theorem 2.

Thus, every class U in R- T OTAL has the remarkable property that not only the class U itself is learnable but all
classes obtained from U by effective transformations are R- T OTAL-learnable, too. This property may serve as a
first informal definition of what is meant by saying that a class is robustly learnable.

For discussing the importance of robust learnability, it is helpful to recall that we have separated several learning
types by using some class of self-describing functions, for example Usd. On the one hand, this is an elegant proof
method and, as pointed out by Jain, Smith and Wiehagen [64], self-description is quite a natural phenomenon in that
every cell of every organism contains a description of itself. On the other hand, such separating classes may seem
a bit artificial, since they use coding tricks. So for the positive part of the separation, a learner only needs to fetch
some code from the input. For the non-learnability result one usually shows that at least one function in the separating
class is too complex to gain the information necessary to learn it in the more restricted model. If such self-describing
function classes were the only separating examples, then we would have to draw major consequences for our overall
understanding of learning and for the value of the theory developed so far.

Around thirty years ago, Bārzdiņš suggested to prove or to disprove the following conjecture.
Let U ⊆ R; then O(U) ∈ LIM for all effective operators O with O(U) ⊆ R implies that there is a ψ ∈ R2 such

that U ⊆ Rψ .
An affirmative answer to Bārzdiņš’ Conjecture could be interpreted as follows. Every function class U in

LIM \ NUM contains only functions having encoded a certain information in their graphs which is helpful in
the learning process. Intuitively, this information is then erased by some operator O and thus O(U) /∈ LIM.

However, it took many years before any progress concerning Bārzdiņš’ Conjecture was made. Zeugmann [120]
proposed to generalize Bārzdiņš’ conjecture by replacing LIM by any learning type LT and showed it to be true for
FIN and T-REL. Then Kurtz and Smith [72,73] disproved Bārzdiņš’ conjecture for classes U ∈ NUM. The major
breakthrough was made by Fulk [49] who also coined the term of robust learnability. Let LT be any learning type.
Then we call a class U robustly LT -learnable, iff, for every operator O, the class O(U) is LT -learnable.

There were many discussions about which operators O are admissible in this context. Fulk [49] considered the class
of all general recursive operators and for this version he disproved Bārzdiņš’ Conjecture for LIM. Subsequently,
many interesting results were obtained in this context (cf., e.g., [5,28,60,64,91,105]).

We would like to mention here only some of the results obtained. For this purpose we use LT -robust to denote the
family of all classes U ⊆ R such that O(U) ∈ LT for every general recursive operator O.



46 T. Zeugmann, S. Zilles / Theoretical Computer Science 397 (2008) 4–56

As we have seen in Theorem 21, there is an infinite anomaly hierarchy forLIM-type learning and also for BC-type
identification (cf. Case and Smith [30]). These hierarchies do not stand robustly.

Theorem 57 (Fulk [49]). (1) LIMa-robust = LIM-robust for all a ∈ N ∪ {∗}.
(2) BCa-robust = BC-robust for all a ∈ N ∪ {∗}.

Let us denote by LIMn the family of all classes U ⊆ R which can be learned in the limit with at most n mind
changes. Then it is not hard to prove that LIMn ⊂ LIMn+1 for every n ∈ N (cf. [30]).

Interestingly, this mind change hierarchy does stand robustly as the following theorem shows. Note that the proof
uses a complicated priority argument.

Theorem 58 (Jain, Smith and Wiehagen [64]). LIMn-robust ⊂ LIMn+1-robust for all n ∈ N.

In [64] it was also shown that the LIMteam(n) and BCteam(n) hierarchies stand robustly.

Theorem 59 (Jain, Smith and Wiehagen [64]). (1) LIMteam(n)-robust ⊂ LIMteam(n + 1)-robust for all n ∈ N+,
(2) BCteam(n)-robust ⊂ BCteam(n + 1)-robust for all n ∈ N+.

Following Case et al. [29], we call a learning typeLT robustly rich ifLT contains a robustly learnable class U such
that U /∈ NUM. Otherwise, LT is said to be robustly poor. Using this terminology, Bārzdiņš’ Conjecture meant that
LIM is robustly poor. But Fulk [49] showed LIM to be robustly rich. Furthermore, by Theorem 59 we know that
LIMteam(n) and BCteam(n) are robustly rich. On the other hand, FIN and T-REL are robustly poor (cf.[120]). By
Theorem 43, Assertion (1), we know that T - CONSδ ⊂ T-REL for all δ ∈ N, thus we can conclude that T - CONSδ
is robustly poor, too, for all δ ∈ N. In contrast, R- CONS is robustly rich (cf. Theorem 45 in Case et al. [29]).

A more detailed study on which learning types are robustly rich and robustly poor, respectively, was carried out
by Case et al. [29] and the reader is encouraged to consult this paper for many deep and interesting results. As a final
example, we mention the following. Adding a uniformity condition (see also Section 9.4) in [29] it was proved that
LIM-uniform-robust ⊆ CONS. This for sure sheds additional light on the importance of consistent learning.

Before closing this subsection, let us again take a look at our five classes from Section 3. Since U0 ∈ NUM, it is
robustly learnable. Usd is not robustly learnable, since for O( f ) = g, where g(x) = f (x + 1) we have O(Usd) = R.
Likewise, in general the class U(ϕ,Φ) is not in LIM-robust. This can be seen by using Theorem 2.4 and Corollary 2.6
in [91]. As far as Umahp and Uahp are concerned, now the answer depends for both classes on the underlying
complexity measure. There are complexity measures such that Umahp, Uahp ∈ LIM-robust (cf. Theorem 16 and
Corollary 17 in [105]). Furthermore, there are “natural” complexity measures such that Umahp /∈ LIM-robust
(cf. Theorem 19 in [105]).

Next, we turn our attention to learning from good examples, motivated partly by the intuitive thought that humans
can learn more efficiently from well-chosen (good) examples than they can from arbitrary input.

9.2. Assisting the learner

The most natural way to help a learner–at least when thinking of the way humans learn–would be to emphasize
particularly representative or helpful examples during the learning process and maybe not to present unhelpful
examples at all. In particular, thus one could think of learning from only finitely many examples instead of learning
from a whole infinite sequence of examples representing a target function. On a formal level, this requires a notion of
what helpful examples, called good examples, are, and how they should be utilized in learning.

In this context, Freivalds, Kinber, and Wiehagen [45] have introduced two models of learning from good examples,
one in the context of finite learning, one in the context of learning in the limit.

Definition 24 (Freivalds et al. [45]). Let U ⊆ R and let ψ ∈ P2. The class U is said to be

• finitely learnable from good examples with respect to ψ if there is a numbering ex ∈ P2, a strategy S ∈ P , and a
function z ∈ P such that U ⊆ Pψ and, for any i ∈ N with ψi ∈ U ,

(1) exi is a finite subfunction of ψi and z(i) = |{x | ψi (x)↓ }|,
(2) ψS(ex∪ε) = ψi for any finite subfunction ε of ψi .
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• learnable in the limit from good examples with respect to ψ if there is a numbering ex ∈ P2, a strategy S ∈ P2,
and a function z ∈ P such that U ⊆ Pψ and, for any i ∈ N with ψi ∈ U ,

(1) exi is a finite subfunction of ψi and z(i) = |{x | ψi (x)↓ }|,
(2) for any finite subfunction ε of ψi , there is some j with ψ j = ψi and S(ex ∪ ε, n) = j for all but finitely many

n ∈ N.

The resulting learning types are defined in the usual way and denoted by GEX -FIN and GEX -LIM, respectively.
Interestingly, GEX -FIN coincides with the standard inference type of behaviorally correct learning, i.e., the

classes learnable finitely from good examples can be characterized as exactly those which are learnable behaviorally
correctly.

Theorem 60 (Freivalds et al. [45]). GEX -FIN = BC

So, accessing good examples, learning strategies can, even within finite learning processes, achieve more than
ordinary strategies can in the limit. This theorem naturally raises the question whether or not GEX -LIM is richer
than GEX -FIN . The affirmative answer is provided by the following theorem. When learning from good examples
in the limit, the whole class of all recursive functions can be identified.

Theorem 61 (Freivalds et al. [45]). R ∈ GEX -LIM

For the proofs of Theorems 60 and 61 as well as for further results, we refer the reader to [45].
The paradigm of learning from good examples has received further interest in research meanwhile; the reader is

referred to Nessel [87] for further results on learning recursive functions. Additionally, this framework was discussed
for learning recursive languages as well; here the reader is directed to the survey by Lange et al. [77]. It has also
attracted interest in other branches of learning theory, see e.g., Ling [80].

9.3. Complexity of learning problems

Up to now we have discussed many different learning models derived from Gold’s [53] initial one, compared these
to one another, and illustrated their strengths and limitations with several examples of learnable or non-learnable
classes, respectively. However, we still do not have a deeper insight into what makes some classes harder to learn than
others. Characterization theorems provide necessary and sufficient conditions for learnability, but in case two classes
are learnable, can we say anything about which of the two is the more challenging learning problem?

To deal with this question, Freivalds et al. [43] have introduced a notion of intrinsic complexity of learning. The
idea was to define an appropriate notion of reducibility, inspired by results from recursion theory and complexity
theory where similar approaches have been successfully applied.

The notion of reducibility defined is based on the usage of recursive operators, i.e., partial recursive operators that
are defined on every partial function.

Definition 25 (Rogers [97]). A partial recursive operator O : P → P is called a recursive operator if dom(O) = P.

We continue with the reduction principle. Given two classes U1 and U2 of recursive functions a reduction from U1
to U2 involves two recursive operators. The first one translates any function in U1 into a function in U2. The second
operator converts any successful hypothesis sequence for the obtained function in U2 into a successful hypothesis
sequence for the original function in U1. Here the term successful hypothesis sequence is used to refer to the notion of
admissible sequences defined as follows.

Definition 26 (Freivalds et al. [43]). Let f ∈ R. An infinite sequence σ is called LIM-admissible for f if σ
converges to a ϕ-program for f .

This finally allows us to define the desired reducibility relation.

Definition 27 (Freivalds et al. [43], Kinber et al. [67], Jain et al. [61]). Let U1,U2 ∈ LIM. U1 is called LIM-
reducible to U2 if there exist recursive operators Θ and Ξ such that each function f ∈ U1 satisfies the following
two conditions:

(1) Θ( f ) ∈ U2,
(2) if σ is a LIM-admissible sequence for Θ( f ), then Ξ (σ ) is a LIM-admissible sequence for f .
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In what follows we omit the prefix LIM, since we consider the notion of reducibility here only in the context of
learning in the limit; however, this definition has also been adapted and analyzed for other inference types.

Now the idea for reductions is as follows: if U1 is reducible to U2, then a strategy identifying all functions in U1
can be computed from any strategy which is successful for U2. For instance, each class in LIM is reducible to the
class U0 of functions of finite support (cf. Theorem 62). Thus U0 is a class in LIM of highest complexity respecting
the notion of reducibility. Such classes are said to be LIM-complete.

Definition 28 (Freivalds et al. [43], Kinber et al. [67], Jain et al. [61]). Let U ⊆ R. U is LIM-complete if U ∈

LIM and every class U ′
∈ LIM is LIM-reducible to U .

Theorem 62 (Freivalds et al. [43]). U0 is LIM-complete.

Note that U0 is an r.e. class and every initial segment of any function f ∈ U0 is an initial segment of infinitely
many other functions f ′

∈ U0. This property has turned out to be crucial when trying to characterize the hardest
problem sets in learning in the limit (with respect to the proposed complexity notion). This is reflected in the following
characterization theorem for complete classes.

Theorem 63 (Kinber et al. [67], Jain et al. [61]). Let U ∈ LIM. U is LIM-complete, iff there is some ψ ∈ R2

such that

(1) Pψ ⊆ U ,
(2) for all i, n ∈ N there are infinitely many j ∈ N satisfying ψi =n ψ j and ψi 6= ψ j .

That means that complete classes are characterized by being topologically complicated (in terms of the second
condition demanding density with respect to the so-called Baire metric, see Rogers [97] for details) and containing an
algorithmically rather “simple”–since uniformly r.e.–set (in terms of the first condition).

9.4. Uniformity of learning problems

Throughout this survey, we have very often–sometimes implicitly–encountered cases in which different classes
of recursive functions can be learned with very similar strategies, or–more specifically–in which different learning
problems are solved with a uniform method.

For instance, all classes in NUM can be learned with Gold’s identification by enumeration strategy [53] (cf. the
proof of Theorem 2). This strategy is uniform in the sense that it only needs access to the numbering ψ ∈ R2

comprising the class of target functions to be learned. Numerous other impressive examples of strategies working
uniformly for a huge collection of learning problems have been obtained in the characterization theorems discussed
above. Note that in each of these theorems, the sufficiency part of the proof deploys a uniform strategy specific for the
inference type that is being characterized.

In contrast to that, most of the learning types studied so far have the property that their corresponding collections
of learnable function classes are not closed under union. For instance, the proof of Theorem 19 shows that, although
both Usd and U0 are learnable in the limit, their union is not even BC-learnable. In particular, both classes can be
learned in the limit with two different instances of the same uniform method (different special strategies derived from
a kind of meta-strategy), but there is no way of designing an instance of that uniform method, which can cope with all
functions contained in any of the two classes.

Intuitively, each special strategy for a special class of functions is designed using some prior knowledge about
the target class (e.g., the identification by enumeration strategy for a class in NUM knows a numbering ψ ∈ R2

comprising the target class) which can be seen as a restriction of the space of possible hypotheses and thus a restriction
of the search space. Now, if the union of two such learnable classes is no longer learnable, this means that there is no
means of successfully exploiting the prior knowledge that a function is contained in one of these classes.

Hence there may be ways of describing prior knowledge about certain learnable classes such that this prior
knowledge can be exploited by a meta-strategy in order to instantiate strategies tailored for the corresponding target
classes. The circumstances under which such meta-strategies exist were the focus of a branch of research concerning
the so-called uniform learning.
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Any formalization of this approach requires a notion of how to describe target classes of recursive functions (i.e.,
means of describing prior knowledge about a target class) as well as a notion of the desired learning behavior of
meta-strategies.

A straightforward scheme for describing classes of recursive functions is the following: Consider a fixed three-
place Gödel numbering τ . For any d ∈ N, the numbering τ d is just the two-place function resulting from τ , if the first
input is fixed by d4. Thus d corresponds to the set Pτ d = {τ d

i | i ∈ N} of partial recursive functions enumerated by
τ d and may simply serve as a description of the class Rτ d = {τ d

i | i ∈ N} ∩R of recursive functions, which is also
called the recursive core of the numbering τ d . In particular, each set D = {d0, d1, d2, . . .} ⊆ N can be regarded as a
set of descriptions and thus as a collection of the “learning problems”Rτ d0 ,Rτ d1 ,Rτ d2 , . . . In this context, such a set
D is simply called a description set.

Now a meta-strategy is a strategy expecting two inputs: first, a parameter d ∈ N interpreted as a description of some
recursive core, and second, a coding f n of an initial segment of some recursive function f . If S is a meta-strategy and
d any description, then Sd denotes the strategy resulting from S, when the first input is fixed by d. Given a learning
type LT as studied above, a meta-strategy S is a successful uniform strategy for D, in case Sd learns Rτ d for all
d ∈ D according to the constraints of LT . More formally:

Definition 29 (Zilles [122], Jantke [65]). Let LT be a learning type and D ⊆ N a description set. Let ϕ be a Gödel
numbering. D is uniformly LT -learnable (with respect to ϕ) if there is a meta-strategy S, such that, for any d ∈ D,
the strategy Sd is an LT -learner for the class Rτ d with respect to ϕ. UNI-LT denotes the class of all uniformly
LT -learnable description sets.5

Lemma 2 justifies the choice of a fixed Gödel numbering ϕ as a hypothesis space beforehand; the reader may easily
verify that this definition of learnability is independent of the choice of ϕ. However, this is not the only suggestive
notion of hypothesis spaces in uniform learning. Note that each numbering τ d enumerates at least all functions in
Rτ d , so a meta-strategy might also be designed for using τ d as a hypothesis space when learning Rτ d . This results
in a special case of Definition 29, because τ d -programs can be uniformly translated into programs in a fixed Gödel
numbering ϕ. We refer to this model as description-uniform learning.

Definition 30 (Zilles [122], Jantke [65]). Let LT be a learning type and D ⊆ N a description set. D is description-
uniformly LT -learnable if there is a meta-strategy S, such that, for any d ∈ D, the strategy Sd is an LT -learner for
the classRτ d with respect to τ d . UNIdes-LT denotes the class of all description sets which are description-uniformly
LT -learnable.

Uniform learning was studied for numerous learning types, especially in comparison of different learning types to
one another, cf. Zilles [124,123]; however, for the sake of brevity, we restrict the following survey to the inference
types LIM and BC. Note that most of the results hold analogously for many other learning types. The following
theorem states that description-uniform learning is a proper restriction of uniform learning.

Theorem 64 (Zilles [124]). UNIdes-LIM ⊂ UNI-LIM and UNIdes-BC ⊂ UNI-BC.

But what are the general limitations of uniform learning? It turns out that there are “maximally powerful” meta-
strategies: with a suitable choice of descriptions all non-uniformly learnable classes of functions can be learned
uniformly.

Theorem 65 (Zilles [124], Jantke [65]). Let LT ∈ {LIM,BC}. Then there exists a description set D ⊆ N, such
that

(1) for all U ∈ LT there is some d ∈ D satisfying U ⊆ Rτ d ;
(2) D ∈ UNI-LT .

4 Note that throughout this subsection, for any d, i ∈ N, we actually denote the function λx .τ (d, i, x) by τd
i . Here the superscript d does not

mean that we consider a coding of an initial segment of any function. However, the intended meaning will always be clear from context.
5 Note that, by intuition, it seems adequate to refer to uniformly learnable collections of recursive cores represented by description sets, rather

than to uniformly learnable description sets themselves. Yet, for convenience, the latter notion is preferred.
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In contrast to this, depending on the choice of the descriptions, even sets describing the most simple recursive cores
can be non-learnable. This concerns descriptions of recursive cores each consisting of just one function or even, in
the description-uniform model, descriptions for just a single recursive core consisting of just one function. This is a
significant difference compared to non-uniform learning, because there arbitrary finite classes are trivially learnable.

Theorem 66 (Zilles [124]). (1) Let D = {d ∈ N | |Rτ d | = 1} be the set of all descriptions representing singleton
recursive cores. Then D /∈ UNI-BC.

(2) Fix any recursive function r and let D = {d ∈ N | Rτ d = {r}} be the set of all descriptions representing the
recursive core {r}. Then D /∈ UNIdes-BC.

Theorems 65 and 66 show how much the choice of descriptions affects uniform learnability. In a slightly more
subtle way this is expressed in the following two theorems, which moreover show that the hierarchy of learning types
in non-uniform learning is reflected in the uniform framework.

Theorem 67 (Zilles [124]). UNI-LIM ⊂ UNI-BC. In particular, there is a D ⊆ N satisfying

(1) |Rτ d | = 1 for all d ∈ D,
(2) D ∈ UNI-BC \ UNI-LIM.

Theorem 68 (Zilles [124]). UNIdes-LIM ⊂ UNIdes-BC. In particular, for any r ∈ R, there is a D ⊆ N satisfying

(1) Rτ d = {r} for all d ∈ D,
(2) D ∈ UNIdes-BC \ UNIdes-LIM.

Now many of the results obtained in the non-uniform framework of learning can be lifted to the meta-level of
uniform and description-uniform learning. We will pick two aspects for illustration: (i) characterizations of learning
types as in Section 8 and (ii) intrinsic complexity as in Section 9.3. From now on, however, we shall focus exclusively
on the learning type LIM.

Most of the characterizations shown above have their immediate counterpart in the context of uniform learning,
such as the following characterizations derived from Theorem 52. However, it should be noted that characterizations
for description-uniform learning always require some additional “embedding” property (like Property (3) in
Theorem 70). The proofs can be easily lifted from the non-uniform case.

Theorem 69 (Zilles [123]). Let D ⊆ N. D ∈ UNI-LIM, if and only if there is a three-place partial recursive
numbering χ and a recursive function h, such that for all d ∈ D the following conditions are fulfilled.

(1) Rτ d ⊆ Pχd ,
(2) χd

i 6=h(d,i, j) χ
d
j for all i, j ∈ N with i 6= j .

Theorem 70 (Zilles [123]). Let D ⊆ N. D ∈ UNIdes-LIM, if and only if there is a three-place partial recursive
numbering χ , a recursive function h, as well as a recursive function e ∈ R2, such that for all d ∈ D the following
conditions are fulfilled.

(1) Rτ d ⊆ Pχd ,
(2) χd

i 6=h(d,i, j) χ
d
j for all i, j ∈ N with i 6= j ,

(3) τ d
e(d,i) = χd

i for all i such that χd
i ∈ R.

In order to lift the intrinsic complexity approach to uniform learning, first appropriate notions of admissible
sequences and of reducibility need to be defined — again distinguishing between uniform learning (the UNI-LIM-
model) and description-uniform learning (the UNIdes-LIM-model). For that purpose, from now on, let ϕ denote a
fixed Gödel numbering.

Definition 31 (Zilles [125]). Let d ∈ N be any description and let f ∈ Rτ d . An infinite sequence σ of natural
numbers is called

• UNI-LIM-admissible for d and f if σ converges to a ϕ-program for f ;
• UNIdes-LIM-admissible for d and f if σ converges to a τ d -program for f .
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Since the recursive operators needed now have to take the descriptions d ∈ N of the target classes into account,
actually a new notion of recursive operators is required.

Definition 32 (Zilles [125]). Let Θ be a total function mapping pairs of functions to pairs of functions. Θ is called
a recursive meta-operator if the following properties are satisfied for all functions δ, δ′ and f, f ′ and all numbers
n, y ∈ N:

(1) if δ ⊆ δ′, f ⊆ f ′, as well as Θ(δ, f ) = (γ, g) and Θ(δ′, f ′) = (γ ′, g′), then γ ⊆ γ ′ and g ⊆ g′;
(2) if Θ(δ, f ) = (γ, g) and γ (n) = y (or g(n) = y, respectively), then there exist initial subfunctions δ0 ⊆ δ and

f0 ⊆ f such that (γ0, g0) = Θ(δ0, f0) fulfills γ0(n) = y (g0(n) = y, respectively);
(3) if δ and f are finite and Θ(δ, f ) = (γ, g), then one can effectively (in (δ, f )) enumerate γ and g.

This finally enables us to define the following formalization of reducibility in uniform and description-uniform
learning.

Definition 33 (Zilles [125]). Let D1, D2 ∈ UNI-LIM. D1 is said to be UNI-LIM-reducible to D2 if there is a
recursive meta-operator Θ and a recursive operator Ξ , such that the following holds. For any description d1 ∈ D1,
any function f1 ∈ Rd1 , and any δ1 ∈ N∗ there is a δ2 ∈ N∗ and a function f2 satisfying:

(1) Θ(δ1d∞

1 , f1) = (δ2, f2),
(2) δ2 converges to a description d2 ∈ D2 such that f2 ∈ Rd2 ,
(3) if σ is a UNI-LIM-admissible sequence for d2 and f2, then Ξ (σ ) is UNI-LIM-admissible for d1 and f1.

Moreover, if D1, D2 ∈ UNIdes-LIM, then the definition of UNIdes-LIM-reducibility is obtained by replacing
UNI-LIM by UNIdes-LIM above as well as replacing Condition (3) by Condition (3′): if σ is a UNIdes-LIM-
admissible sequence for d2 and f2, then Ξ (d2σ) is UNIdes-LIM-admissible for d1 and f1.

As in the non-uniform framework, these reducibility notions immediately yield completeness notions, obtained in
the straightforward way.

Definition 34 (Zilles [125]). Let D ⊆ N.

(1) D is UNI-LIM-complete if D ∈ UNI-LIM and every set D′
∈ UNI-LIM is UNI-LIM-reducible to D.

(2) D is UNIdes-LIM-complete if D ∈ UNIdes-LIM and every set D′
∈ UNIdes-LIM is UNIdes-LIM-

reducible to D.

For illustration consider the following two examples taken from [125]:
Assume a recursive function g, given any i, x ∈ N, fulfills τ g(i)

0 = ϕi and τ g(i)
x =↑, if x > 0. Then the description

set {g(i) | i ∈ N} is UNI-LIM-complete.
Let r, h ∈ R. Assume that τ h(i)

i = r for all i , as well as ϕh(i)
x =↑ for any i, x ∈ N with x 6= i . Then the description

set {h(i) | i ∈ N} is UNIdes-LIM-complete, but not UNI-LIM-complete.
Finally, as in the non-uniform case, we obtain characterizations of UNI-LIM-complete description sets as well

as of UNIdes-LIM-complete description sets.

Theorem 71 (Zilles [125]). Let D ∈ UNI-LIM. D is UNI-LIM-complete, if and only if there is a ψ ∈ R2 and
a limiting r.e. family (di )i∈N of descriptions in D, such that the following conditions are fulfilled:

(1) ψi ∈ Rdi for all i ∈ N;
(2) every function in Pψ is an accumulation point of Pψ .

Theorem 72 (Zilles [125]). Let D ∈ UNIdes-LIM. D is UNIdes-LIM-complete, if and only if there is a ψ ∈ R2

and a limiting r.e. family (di )i∈N of descriptions in D, such that the following conditions are fulfilled:

(1) ψi ∈ Rdi for all i ∈ N;
(2) for each i, n ∈ N there are infinitely many j ∈ N satisfying ψi =n ψ j and (di , ψi ) 6= (d j , ψ j ).

How closely the results on intrinsic complexity of uniform learning are related to the results in the non-uniform
framework, as presented in the previous section, is shown in an alternative formulation of Theorem 71, which holds
analogously if Property (2) is replaced by the following property: (2′) Pψ is LIM-complete.
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10. Summary and conclusions

Inductive inference of recursive functions has attracted much attention during the past four decades. As we have
seen, the theory has been developed to a large extent and many interesting results have been obtained. These results
in turn deepen our principal understanding of inference processes and have many implications for the philosophy of
science, for cognition, and of course for learning in general (cf. [90,62]).

For example, the prediction model (see Definition 4) originating in inductive inference of recursive functions was
adapted in several branches of learning theory. A prominent example is Littlestone’s [81] on-line prediction model
which is also known as the mistake-bound learning model and which in turn has nice relations to PAC learning (cf.
Haussler et al. [57]). In this context we mention here again the Algorithm FP from the proof of Theorem 6.

Furthermore, we have investigated consistent learning versus inconsistent learning, observing a general
inconsistency phenomenon: In spite of the remarkable power of consistent learning it turns out that this power is not
universal. There are learning problems which can exclusively be solved by inconsistent strategies, i.e., by strategies
that do temporarily incorrectly reflect the behavior of the unknown object on data for which the correct behavior of the
object is already known. Moreover, the necessity of inconsistent strategies, working in a somewhat unintuitive way,
has been traced back to the undecidability of consistency.

If consistent learning is possible, then the corresponding consistency problem must be decidable with respect
to some suitably chosen numbering. Further results show that the inconsistency phenomenon is also valid in more
realistic situations. Wiehagen and Zeugmann [116] considered a domain where consistency is decidable and the
learning strategies have to work in polynomial time, observing that certain learning problems can be solved efficiently,
but not efficiently by any consistent strategy (unless P = NP). The reason is quite analogous to that in the setting
of learning recursive functions. Now the NP-hardness of problems can prevent learning strategies from producing
consistent hypotheses in polynomial time.

The characterizations of learning types in terms of computable numberings also provide deeper insight concerning
the way in which learning strategies can actually perform the inference process in a uniform manner. The first and
very powerful method in this regard is Gold’s [53] “identification by enumeration”. Though the methods provided in
the sufficiency proofs of the characterizations theorems in terms of computable numberings have their peculiarities,
they all have a rather strong resemblance to “identification by enumeration”. This was further investigated by Kurtz
et al. [74], where the authors concluded with the thesis that enumeration techniques are even universal in that each
solvable learning problem in inductive inference can be solved by an adequate enumeration technique. This insight is
of fundamental epistemological importance.

On the other hand, these methods do not yield efficient practical algorithms. In general the size of the space that
must be searched is typically exponential in the length of the description of the first correct hypothesis.

Looking at the characterizations in terms of complexity, we see that the results obtained also have nice implications
for the theory of computational complexity. For illustration, let us recall that there is no function h ∈ R2 such that
Φi (x) ≤ h(x, ϕi (x)) for all i ∈ N with ϕi ∈ R and almost all x ∈ N (cf., e.g., [99]). Using Theorem 37 we can
directly generalize this to the statement that there is no effective Operator O such that Φi (x) ≤ O(ϕi , x) for all i ∈ N
with ϕi ∈ R and almost all x ∈ N.

Furthermore, Theorems 37 and 38 together solve the problem of characterizing the operator honest functions.
Similar results can be obtained by combining further characterizations (cf. [118]).

Additionally, the characterizations in terms of complexity also show that every function to be learned possesses a
recursively computable upper bound for its complexity. In turn, the additional knowledge of such an upper bound does
not only guarantee the learnability of the considered functions but also the synthesis of a program with a complexity
not greater than the given upper bound almost everywhere.

Let us finish this survey with the remark that the field of learning recursive functions is large but the discourse here
is brief. Although several topics could not be touched at all, the material selected for this survey hopefully provides a
good overview and guides the reader to other, more specialized sources of information.

Acknowledgements

The authors heartily thank the anonymous referees for their careful reading and the many valuable comments made.
Sandra Zilles was supported by the Alberta Ingenuity Fund.



T. Zeugmann, S. Zilles / Theoretical Computer Science 397 (2008) 4–56 53

References

[1] L.M. Adleman, M. Blum, Inductive inference and unsolvability, J. Symb. Logic 56 (3) (1991) 891–900.
[2] Y. Akama, T. Zeugmann, Consistency conditions for inductive inference of recursive functions, in: New Frontiers in Artificial Intelligence,

JSAI 2006 Conference and Workshops, Tokyo, Japan, June 2006, Revised Selected Papers, in: Lecture Notes in Artificial Intelligence,
vol. 4384, Springer, Berlin, 2007, pp. 251–264.

[3] Y. Akama, T. Zeugmann, Consistent and coherent learning with δ-delay, Technical Report TCS-TR-A-07-29, Division of Computer Science,
Hokkaido University, Oct 2007.

[4] A. Ambainis, Probabilistic inductive inference: A survey, Theoret. Comput. Sci. 264 (1) (2001) 155–167.
[5] A. Ambainis, R. Freivalds, Transformations that preserve learnability, in: Algorithmic Learning Theory, 7th International Workshop,

ALT’96, Sydney, Australia, October 1996, Proceedings, in: Lecture Notes in Artificial Intelligence, vol. 1160, Springer, 1996, pp. 299–311.
[6] D. Angluin, C.H. Smith, A survey of inductive inference: Theory and methods, ACM Comput. Surv. 15 (3) (1983) 237–269.
[7] D. Angluin, C.H. Smith, Inductive inference, in: Encyclopedia of Artificial Intelligence, J. Wiley and Sons, New York, 1987, pp. 409–418.
[8] M. Anthony, N. Biggs, Computational Learning Theory, in: Cambridge Tracts in Theoretical Computer Science, vol. 30, Cambridge

University Press, Cambridge, 1992.
[9] K. Apsı̄tis, R. Freivalds, R. Simanovskis, J. Smotrovs, Closedness properties in ex-identification, Theoret. Comput. Sci. 268 (2) (2001)

367–393.
[10] K. Apsı̄tis, R. Freivalds, C. Smith, Choosing a learning team: A topological approach, in: Proc. of Twenty-sixth ACM Symposium on Theory

of Computing, 1994.
[11] J.M. Barzdin, Prognostication of automata and functions, in: C.V. Freiman, J.E. Griffith, J.L. Rosenfeld (Eds.), Information Processing 71,

Proceedings of IFIP Congress 71, in: Foundations and Systems, vol. 1, North-Holland, Ljubljana, Yugoslavia, 1972, pp. 81–84.
[12] J.M. Barzdin, Inductive inference of automata, functions and programs, in: Proc. of the 20th International Congress of Mathematicians,

Amer. Math. Soc. Transl., Vancouver, Canada, 1974, pp. 455–460. Republished in (2) 109, 1977, pp. 107–112.
[13] J.M. Barzdin (Ed.) Teori� Algoritmov i Programm, vol. I, Latvian State University, 1974.
[14] J.M. Barzdin (Ed.) Teori� Algoritmov i Programm, vol. II, Latvian State University, 1975.
[15] J.M. Barzdin (Ed.) Teori� Algoritmov i Programm, vol. III. Latvian State University, 1977.
[16] J.M. Barzdin, R.V. Freivald, On the prediction of general recursive functions, Soviet Math. Dokl. 13 (1972) 1224–1228.
[17] �.M. Barzdin~, Slo�nost~ i qastotnoe rexenie nekotoryh algoritmiqeski nerazreximyh massovyh problem, Dokt.

dissertaci�, Novosibirsk, 1971.
[18] �.M. Barzdin~, Dve teoremy o predel~nom sinteze funkciĭ, In: J.M. Barzdin (Ed.), Teori� Algoritmov i Programm, vol.
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[41] R. Freivalds, J. Bārzdiņš, K. Podnieks, Inductive inference of recursive functions: Complexity bounds, in: Baltic Computer Science,
in: Lecture Notes in Computer Science, vol. 502, Springer-Verlag, Berlin, 1991, pp. 111–155.

[42] R. Freivalds, O. Botuscharov, R. Wiehagen, Identifying nearly minimal Gödel numbers from additional information, Ann. Math. Artif. Intell.
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