Formal Learning Theory Homework 5

(due on Friday, March 15th at 1pm)

March 8th, 2013

Ex. 1 Recall the following theorem (proved in Lecture 9).

Theorem 1 $\mathcal{L} = \{K \cup \{x\} \mid x \notin K\}$ can be given as a uniformly r.e. class.

Proof Let k_0, k_1, k_2, \ldots be en enumeration of K. Let n be a specific number not in K. There are lots of those, e.g. any index of the everywhere undefined function will do. Then below there is a uniform enumeration of \mathcal{L} , given by uniform enumerations of the L_i .

Start each L_i by the number *i* and continue with k_0, k_1, k_2, \ldots . You do this until *i* appears as k_m . If it does you put *n* in instead of k_m and continue after with k_{m+1}, k_{m+2}, \ldots there are two possibilities:

- 1. *i* is not in K. Then *i* will never occur as k_m and L_i will be an enumeration of $K \cup \{i\}$.
- 2. *i* is in K. Then it will occur as k_m . Then *n* will be substituted, and L_i will be an enumeration of $K \cup \{n\}$.

It is clear that each $K \cup \{x\}$ for $x \notin K$ is represented in the enumeration, and that each member of the enumeration is some $K \cup \{x\}$ for $x \notin K$.

In the enumeration, $K \cup \{n\}$ will occur many times. The question of the exercise is, give a 1-1 enumeration of \mathcal{L} . *Hint*: You may assume as true that \overline{K} contains an infinite r.e. subset. A question we do not know the answer to: what happens if you replace K by a simple set S (an r.e. set such that \overline{S} does not contain an infinite r.e. subset).

Ex. 2

(a) Give two effectively identifiable uniformly recursive families of languages \mathcal{L}_1 and \mathcal{L}_2 such that: $\mathcal{L}_1 \uplus \mathcal{L}_2$ is not identifiable, where $\mathcal{L}_1 \uplus \mathcal{L}_2 = \{L_1 \cup L_2 \mid L_1 \in \mathcal{L}_1, L_2 \in \mathcal{L}_2\}.$

(b) Give two effectively identifiable uniformly recursive families of languages \mathcal{L}_1 and \mathcal{L}_2 such that: $\mathcal{L}_1 \cap \mathcal{L}_2 = \{L_1 \cap L_2 \mid L_1 \in \mathcal{L}_1, L_2 \in \mathcal{L}_2\}$ is not identifiable.

Ex. 3 Finish the proof of Theorem 3 in the handout of Lecture 9, i.e., show that \mathcal{L} defined in the proof cannot be identified by a recursive function conservative on \mathcal{L} (with respect to any index).

Ex. 4 Definition 1 Take $k \in \mathbb{N}$. A learner M identifies a class \mathcal{L} with k-mind changes just in case M identifies \mathcal{L} , and for each $L \in \mathcal{L}$ and each text t for L there exists no more than k steps $n \in \mathbb{N}$ such that $M(t[n]) \neq M(t[n+1])$.

(a) Show that the class $\mathcal{L} = \{\{n, k\} \mid n, k \in \mathbb{N}, n \neq k\}$ is identifiable with 1-mind change.

(b) Show that the class of all finite sets is not identifiable with *n*-mind changes, for any $n \in \mathbb{N}$.