Formal Learning Theory Homework 6 (due on Friday, March 22th at 1pm)

March 15th, 2013

Ex. 1 Give an example of a uniformly recursive family \mathcal{L} of languages and a learner M that finitely identifies \mathcal{L} using all minimal-size DFTTs, but is not the fastest learner on \mathcal{L} .

Ex. 2 Prove that if M is a subset driven learning function in the sense of "On the Complexity of Conclusive Update", then M' defined by:

$$M'(t[n]) = \begin{cases} i & \text{if for some } m \le n \ M(t[m]) = i; \\ \uparrow & \text{otherwise} \end{cases}$$

is a strongly set driven function.

Ex. 3

(a) Define "M finitely identifies \mathcal{L} from positive and negative information".

(b) Formulate a characterization theorem for finite identifiability from positive and negative information of uniformly recursive family \mathcal{L} and prove it.