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A Motivating Example

An inductive inference game of sets and numbers.

{1,2, 3, 4, 5, . . .}
{1, 2,3, 4, 5, . . .}
{1, 2, 3,4, 5, . . .}
{1, 2, 3, 4,5, . . .}
. . .

1, 3, 4, 2, 6, 7, 8, . . .
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A Motivating Example: Questions

1. Are you confident? What would make you change your guess?

2. What was your “guessing rule”?

3. How do you like winning if at least one of your guess is correct?

4. And if you succeed to make a right guess and never change your mind after
that? How many wrong guesses could you make under this condition?



A Motivating Example: Questions

1. Assume that I’ll give you all and only truthful clues. What would be the
guessing rule to win according to the last rule?

2. Add {1, 2, 3, 4, 5, . . .}. Is your guessing rule still good?

3. While keeping {1, 2, 3, 4, 5, . . .} in, assume that I’ll give you all and only
truthful clues, and I’ll guarantee they are ordered increasingly. Can you
win the game?

4. Now, remove {1, 2, 3, 4, 5, . . .}. You get only one guess—would you object
to this winning condition?



1960s: The Beginning of Formal Learning Theory

Hillary Putnam (1965). Trial and error predicates and the solution to a
problem of Mostowski.

E. Mark Gold (1967). Language identification in the limit.

Ray Solomonoff (1964). A formal theory of inductive inference.



What is the Course About

The problem of induction
and related issues in epistemology and philosophy of science.



Problems Addressed

I Language Learning/Grammar Inference

I Scientific Inquiry

I Fallible Knowledge

I Reliable Learning

I Computable Learning and AI
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Practical Information about the Course

Formal Learning Theory: Frameworks Overview
Language Learning
Function Learning
Model-theoretic Learning

Language Learning Paradigm



General Information

I Credits: 6 ects

I Grading: 60% weekly homework, 40% final exam

I Timetable: Tuesdays 15-17 (room G2.13) and Fridays 13-15 (room A1.14)

I Website: http://www.ninagierasimczuk.com/flt2013

I Contact: nina.gierasimczuk@gmail.com, d.h.j.dejongh@uva.nl

http://www.ninagierasimczuk.com/flt2013


Homework

I Assignment published on Friday

I Due on following Friday before the class starts (a week after)

I Preferred format: LaTeX → PDF

I Teaching assistant: Zoé Christoff (http://zoechristoff.com/)

http://zoechristoff.com/


Exam

I Time: Wednesday, March 27th 2013, 13.00-15.45

I Place: SP 904, room A1.04
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Learning Paradigm

1 Possible realities.

2 Hypotheses.

3 Information accessible to the learner.

4 Learner.

5 Success criterion.



Language Learning Paradigm
Also known as Set Learning and Numerical Paradigm

1 Possible realities:

Sets of numbers

2 Hypotheses:

Some names of sets

3 Information accessible to the learner:

Sequences of numbers

4 Learner:

Function that takes a sequence and outputs a hypothesis

5 Success criterion:

After finite number of outputs the answers stabilize on a correct answer



Language Learning Paradigm

Daniel Osherson, Michael Stob, and Scott Weinstein (1986 and 1999).
Systems that Learn.

Eric Martin and Daniel Osherson (1998). Elements of Scientific Inquiry,
Chapter 2.

Steffen Lange and Thomas Zeugmann (1995). A Guided Tour Across the
Boundaries of Learning Recursive Languages.

Steffen Lange, Thomas Zeugmann, and Sandra Zilles (2008). Learning
indexed families of recursive languages from positive data: A survey.



Function Learning Paradigm
Also known as Learning of Functional Languages

1 Possible realities:

Functions

2 Hypotheses:

Names of functions

3 Information accessible to the learner:

Sequences of pairs (argument, value)

4 Learner:

Function that takes a sequence and outputs a hypothesis

5 Success criterion:

After finite number of outputs the answers stabilize on a correct answer



Language Learning Paradigm

Thomas Zeugmann and Sandra Zilles (2008). Learning recursive functions:
A survey.

Kevin Kelly (1996). The Logic of Reliable Inquiry.



Model-theoretic Learning
Also known as First-Order Framework of Inquiry

1 Possible realities:

Models of a given signature

2 Hypotheses:

First order sentences

3 Information accessible to the learner:

Sequences of atomic formulas and negations thereof

4 Learner:

Function that takes a sequence and outputs a hypothesis

5 Success criterion:

After finite number of outputs the answers stabilize on a correct answer



Model-theoretic Learning

Eric Martin and Daniel Osherson (1998). Elements of Scientific Inquiry,
Chapter 3.

Eric Martin and Daniel Osherson (1998). Belief revision in the service of
scientific discovery.



Learning in Epistemic Spaces

1 Possible realities:

Possible worlds

2 Hypotheses:

Sets of possible worlds

3 Information accessible to the learner:

Sequences of propositions

4 Learner:

Function that takes a sequence and outputs a proposition

5 Success criterion:

After finite number of outputs the answers stabilize on a proposition that
is a singleton of the actual world



Learning in Epistemic Spaces

Nina Gierasimczuk (2010). Knowing One’s Limits. Logical Analysis of
Inductive Inference.

Alexandru Baltag, Nina Gierasimczuk, and Alexandru Baltag (2011).
Belief Revision as a Truth-Tracking Process.



Additional Notes on Paradigm Specification
Hypotheses

I Hypotheses are systematic descriptions of possible realities.

I They are sometimes captured as “naming system”.

I The hypotheses are finite descriptions of sets.

I E.g., Turing machines, grammars, natural numbers, logical formulas.



Additional Notes on Paradigm Specification
Information Accessible to the Learner

I In interesting cases the data available at a given step presents only partial
information about a possible reality.

I The character of data is determined by the setting, e.g. in language
learning one might consider only positive or positive and negative
information about a possible reality.

I In the basic setting data presented to the learner is arbitrary, in some
paradigms the learner can request particular information.



Additional Notes on Paradigm Specification
Success Criterion

I Finite identifiability.

I Identifiability in the limit.

I Gradual identifiability.

We will fix the success criterion to be:

after a finite time the answers of the learner stabilize on correct answer.
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Our Main Focus: Language Learning Paradigm (Gold 1967)
Basic definitions

Definition
Let N stand for natural numbers. We call any L ⊆ N a language. Then
L = (Li )i∈N is a class of languages.

Definition
By a text t of L we mean an infinite sequence of elements from L enumerating
all and only the elements from L (allowing repetitions).



Notation

Definition
We will use the following notation:

I tn is the n-th element of t;

I t[n] is the sequence (t0, t2, . . . , tn−1);

I content(t) is the set of elements that occur in t;

I Let N∗ be the set of all finite sequences over N. If α, β ∈ N∗, and
α = 〈x0, . . . , xn〉 and β = 〈y0, . . . , ym〉 then by α∧β we mean the
concatenation of α and β, i.e., 〈x0, . . . , xn, y0, . . . , ym〉;

I M : N∗ → N is a learning function, a map from finite data sequences to
hypotheses.



Identifiability in the Limit

Definition
Learning function M:

1. identifies Li ∈ L in the limit on t iff for co-finitely many m, M(t[m]) = i ;

2. identifies Li ∈ L in the limit iff it identifies Li in the limit on every t for Li ;

3. identifies L in the limit iff it identifies in the limit every Li ∈ L.

A class L is identifiable in the limit iff there is a learning function that identifies
L in the limit.



Some Examples

Example
Let L1 = {Li | i ∈ N− {0}}, where Ln = {1, . . . , n}.

L1 is identifiable in the limit by the following function M : N∗ → N:

M(t[n]) = max(content(t[n]).
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Some Examples

Example
Let L2 = {Li | i ∈ N}, where L0 = N and for n ≥ 1, Ln = {1, . . . , n}.

L2 is not identifiable in the limit.

Argument
To show that this is the case, let us assume that there is a function M that
identifies L2. We will construct a text, t on which M fails:
t starts by enumerating N in order: 0, 1, 2, . . .
if at a number k learner M decides it is L0, t starts repeating k indefinitely.
This means t is a text for Lk .
As soon as M decides it is Lk we continue with k + 1, k + 2, . . ., so t will
become a text for L0, etc.
This shows that there is a text for a set from L2 on which M fails.
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Some Examples

Example
Let L4 = {Ln | Ln = N− {n}, n ∈ N}.

L4 is identifiable in the limit by the learning function M : N∗ → N:

M(t[n]) = min(N− content(t[n])).
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