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If we consider a class L of languages here, we assume it to be numbered, i.e.
each language has a number. Later we will be more precise about the numbering.

Theorem 1 (Gold 1967) The class of all finite languages is identifiable1.

Proof Define M(σ) = content(σ) (i.e., the set of elements contained in σ; of
course, we should properly say, the number of a language L ∈ L, such that
L = content(σ).) Let L be finite and t a text for L. We need to show that M
converges on t to a number for L. For some large enough n, all elements of L
will have occurred in t[n], i.e. content(t[n]) = L, and it will remain that way,
content(t[m]) = L for all m > n. So, M converges to a number for L. �

A cofinite subset of the natural numbers (or more sloppily cofinite set) is a
set that contains all elements of N except finitely many. Similarly, we can talk
about co-singleton sets or co-doubleton sets.

Example 2 The class of all co-singleton sets L = {Li | i ∈ N} with Li = N−{i}
is identifiable.

Proof Take M(σ) = N − µn(n 6∈ content(σ)). Let t be a text for N − {k}.
For a certain m, {0, . . . , k − 1} ⊆ content(t[m]). For all m′ ≥ m, the minimal
number not in content(t[m′]) will be k, so M(t[m′]) = k and M converges to
N− {k}’s number. �

Theorem 3 (Gold 1967) Let L be a family of languages that contains all fi-
nite ones and at least one infinite one. Then L is not identifiable.

Proof Let L contain the infinite set A and all finite sets. We will, for any
M that is presumed to identify L construct a text t for A on which M fails to
converge. Let x1, x2, x3, . . . enumerate A. The text t is constructed in stages. In
stage n the initial segment σn−1 of t that has been constructed will be extended
to an initial segment σn in such a way that content(σn) = {x1, x2, . . . , xn}, i.e.
exactly x1, x2, . . . , xn are used in σn.

1Unless specified otherwise, by ‘identifiable’ we mean ‘identifiable in the limit’.
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• Stage 1. Consider the text x1, x1, x1, . . . . This is a text for the finite
language {x1} supposedly identified by M . So, for a certain initial segment
σ1 of this text, M(σ1) = {x1}. This will be the initial segment σ1 of t.

• Stage n+1. Let the part of t constructed in stage n be σn with content(σn)=
{x1, x2, . . . , xn}. Consider the text σn

∧xn+1, xn+1, xn+1, . . . . This is a
text for the language {x0, x1, . . . , xn, xn+1}. So, M will, after σn, sooner or
later give {x1, x2, . . . , xn+1} as a value. If indeedM(σn

∧〈xn+1, . . . xn+1〉) =
{x1, x2, . . . , xn+1}, we take that string σn

∧〈xn+1, xn+1, . . . xn+1〉 to be
σn+1. It is obvious that t is a text for A and M does not converge on
t.

�

The second Gold theorem can be generalized easily. We leave this as an
exercise. At the heart of this proof an important concept is hidden, the concept
of locking sequence.

Definition 1 (Blum and Blum 1975) A sequence σ is a locking sequence
for learner M and language L if content(σ) ⊆ L and, for each τ with content(τ) ⊆
L, M(σ∧τ) = M(σ).

Theorem 4 (Locking sequence theorem) If M identifies L, then there ex-
ists a locking sequence σ for L such that M(σ) is a number for L.

Before we prove this theorem let us show how to prove Gold’s second theo-
rem quickly by applying the locking sequence theorem.

Proof Let σ be a locking sequence for M and A such that M(σ) is a number for
A, and let x be the first element of σ. Consider the text t = σ∧x, x, x, . . . . This
is a text for the finite set content(σ). For any sequence of x’s, M(σ∧〈x, . . . , x〉) =
M(σ), so M converges on t to the number of A, and does not identify content(σ),
contradicting the fact that M identifies all finite sets. �

Proof of Theorem 4. Assume M identifies L without there being a locking
sequence for M and L on which M gives a number for L.

Let us first assume that a locking sequence σ does exist, but that M(σ) is
not a number for L. This is clearly absurd, since the M would keep giving a
number that is not a number for L on any text for L that starts with σ.

Now it will be sufficient to show that a contradiction follows from the as-
sumption that there exists no locking sequence at all. We construct in stages a
text t for L on which M does not converge. Let x1, x2, x3, . . . enumerate L.

• Stage 1. The string 〈x1〉 is not a locking sequence, so for some τ over L,
M(〈x1〉∧τ) 6= M(〈x1〉). Take 〈x1〉∧τ as the initial segment σ1 of t.

• Stage n + 1. Assume the initial segment σn of t has been constructed
in stage n. By assumption, the sequence σn

∧〈xn+1〉 is not a locking se-
quence, so there is a sequence τ over L such that M(σn

∧〈xn+1〉∧τ) 6=
M(σn

∧〈xn+1〉). Take σn+1 = σn
∧〈xn+1〉∧τ .
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Because each xi occurs in t, t is a text for L. But learner M keeps changing
value on t, it does not converge. �

Example 5 The class L containing the co-singleton sets, and in addition the
set L0 = N is not identifiable.

Proof Assume M identifies L. Let σ be a locking sequence for M and L0.
Let k be the minimal natural number not in content(σ). Consider the text
t = σ∧〈0, 1 . . . , k − 1, k + 1, k + 2, k + 3, . . . 〉. On every initial segment of t
from σ onwards, M will give the value 0. But t is a text for an L ∈ L, namely
L = N− {k}. Therefore M does not identify N− {k} and hence neither L. �

The locking sequence theorem can be used to obtain a characterization of
the identifiable collections of languages.

Definition 2 (Angluin 1980) Let L be a member of the collection of lan-
guages L. A finite subset D of L is a telltale subset of L w.r.t. L if it has the
property that

∀L′ ∈ L (D ⊆ L′ ⇒ L′ 6⊂ L)

or equivalently, ∀L′ ∈ L (D ⊆ L′ ⊆ L⇒ L′ = L).

Theorem 6 (Angluin 1980) A class of languages L is identifiable iff each
L ∈ L has a telltale subset DL.

Proof
[⇒] Let M identify L. Consider a locking sequence σ for M and L, and take
DL = content(σ). We will show that DL is a telltale subset of L. Assume that
it is not, i.e., DL ⊆ L′ ⊂ L for L′ ∈ L. It suffices to get a contradiction.

Assume x1, x2, x3, . . . is an enumeration of L′. Consider the text t =
σ∧〈x1x2, x3, . . . 〉. This is a text for L′. Since t starts with a locking sequence
for L and contains only elements from L, M will converge on t to an number
for L, which contradicts the fact that it is supposed to identify L′ as well.

[⇐] Assume each L ∈ L has a telltale subset DL. Define M in the following way:

M(σ) = µe′(e′ is a number for some L′ ∈ L such that
DL′ ⊆ content(σ) ⊆ L′) if such e′ exists, and 0 otherwise.

Assume t is a text for L and e is the least number for L. It is sufficient to
show that, for k large enough, M(t[k]) = e. Fix n large enough so that DL ⊆
content(t[n]). As t is a text for L, L and e now satisfy

e is the minimal number for L and DL ⊆ content(t[n]) ⊆ L.
Nevertheless, we cannot conclude that M(t[n]) = e, because there may be
(finitely many) other languages L1, . . . , Lm with indices e1, . . . , em < e (and
therefore different from L) that satisfy the same condition (1 ≤ i ≤ m):
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ei is the minimal number for Li and DLi
⊆ content(t[n]) ⊆ Li.

Then M(t[n]) would be the smallest of these pretenders ei. Take any such lan-
guage Li. By the telltale condition, since we now also haveDLi

⊆ content(t[n])⊆L,
and in particular therefore DLi

⊆ L, there will be an xi ∈ L not in Li. As t is a
text for L there will be a ki such that xi ∈ t[ki]. We now take k to be the max-
imum of all the ki and i, and then only L will satisfy DL ⊆ content(t[k]) ⊆ L,
and this will remain so for numbers > k. So, all the Li have been eliminated
and M will keep producing e as its value. �
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