
Recursion-theoretic background for Learning

Theory

Nina Gierasimczuk, Dick de Jongh

February 12, 2013

1 Coding with N
We will introduce the notions we need in a rather informal manner. It may
be helpful to consult in addition a basic introduction to recursion theory. Let
us first introduce coding by natural numbers, The natural numbers are the
elements of the set N = {0, 1, 2, . . . }. Natural numbers can be used to code all
kinds of discrete objects and processes so that one can talk about these objects
and processes and their properties as if one talks about natural numbers and
their properties, a very great advantage both mathematically and in its unifying
effect. The first basic idea is the pairing function, a bijection from N×N onto N.
Usually one takes for this the Cantor function j(x, y) = 1/2((x+ y)2 + 3y+ x).
The function j has inverses j0 and j1 such that for all natural numbers x, y:

j0(j(x, y)) = x, j1(j(x, y)) = y, j(j0(x), j1(x)) = x.

This function enables us to behave as if we talk about pairs of natural numbers
while actually mentioning directly only the natural numbers themselves.

Next one can introduce triples of natural numbers, and n-tuples of natural
numbers in general. A triple j3(x, y, z) can simply be introduced by means of
the pairing function:

j3(x, y, z) = j(j(x, y), z).

In general: jn+1(x1, . . . , xn+1) = j(jn(x1, . . . , xn), xn+1). A last step is the
introduction finite sequences of natural numbers of varied length. Even that
can be done with the pairing function:

〈x0, . . . , xn〉 = j(n+ 1, jn+1(x0, . . . , xn)),

with j1(x) interpreted as x. For these sequences the length is indicated by lh.
Thus, we have lh(〈x0, . . . , xn〉) = n + 1, and in this particular representation
also the equation lh(x) = j0(x). Note that we are using 〈x0, . . . , xn〉 ambigu-
ously between the sequence of numbers and the number that codes it. Such

1

ambiguities are useful. There are inverses (x)i such that, if x = 〈x0, . . . , xn〉
and i ≤ n, then (x)i = xi.

So, now any number can be used as a code for a sequence of some arbitrary
fixed length and of a sequence of varied length. Other objects can be coded
similarly easily. As an example, one can code the symbols p,∧,∨,→,¬,), (
of a propositional language by 0, 1, 2, 3, 4, 5, 6, 7 respectively, the propositional
variables as pairs of p and a natural number, and formulas as the codes of certain
sequences of such symbols. There are various ways to also introduce codings
for finite sets of natural numbers and thereby for finite sets all kinds of discrete
objects which we will not spell out.

2 Partial Recursive Functions

All this means that in studying effective processes and procedures one can, for
a large part, restrict one’s attention to the natural numbers. It turns out that
very many attempts to describe the notion of effective function from natural
numbers to natural numbers lead to an extension to partial functions: ϕ(n)
may be defined (ϕ(n)↓) or undefined (ϕ(n)↑). For such partial functions F and
G one defines F (x) ' G(x) iff (F (x)↓ iff G(x)↓, and F (x) = G(x) if both are
defined). Also the class of effectively computable partial functions invariably
turns out to be the same. The functions in this class are called partial recursive
functions. The (total) recursive functions are the members of this class that are
defined everywhere. One of the many ways of doing this is the introduction of a
theoretical type of machine that calculates functions, Turing machines, register
machines, the Post processes, etc.

Another important point to note is that we need to study only unary func-
tions. Functions of two or more arguments can be studied as functions applied
to pairs or longer sequences and thereby by the coding as unary functions. This
will not inhibit us at all in speaking liberally of functions with sequences as
arguments or values. It may be easier to do so as a manner of speaking. By
coding e.g. the Turing machines by natural numbers one can give each partial
recursive function the code of the Turing machine that computes it. We write
ϕe for the function with code e, and e is the called the index of the function, or
better an index, one function will have may different indices.

It is a fact of experience called the Church-Turing thesis that functions that
can be seen to be effectively computable are recursive. Thus + and × are
recursive functions and also the Cantor pairing function, lh and the inverses
of the sequences. There are many closure operations that lead from recursive
functions to recursive functions. For example, the pairing function was obtained
by composition from + and × and other recursive functions. The recursive
functions are closed under composition. Another important closure operation
is recursion. Its basic form is that, from recursive functions G and H, one can
define a recursive function F as follows:

F (x, 0) = G(x)

2

F (x, y + 1) = H(F (x, y), x, y).

It is easy to see that F can be computed if G and H can. One may also start
with a finite number of values of F ”given”, e.g. F (x, 0), F (x, 1), F (x, 2) instead
of only one. For us a particular form is most useful, recursion over sequences.
For example, if G and H are recursive, the F is, given the following equations:

F (x, 〈y〉) = G(x, y)

F (x, σ ∧〈y〉) = H(F (x, σ), x, y).

3 Recursive Sets

With regard to sets, or equivalently, predicates one is in first instance interested
in the sets for which one can decide membership. In this set up these are the
so-called recursive sets, the sets A for which the characteristic function KA is
recursive:

KA(n) = 1 if n ∈ A, KA(n) = 0 if n 6∈ A.

An important recursive predicate is Kleene’s T -predicate; Texy expresses that
e is (the code of) a Turing-machine that on input of the number x leads to a
concluded computation (coded by) y. It is combined with a recursive outcome
function U , Uy is the outcome of the concluded computation y. This leads to

Theorem 1 (Kleene’s Normal Form Theorem) For each partial recursive func-
tion F there exists an e such that F = ϕe and, for all x, F (x) ' U(µy Texy).

The complexity of the computations of F = ϕe can then be measured by
the function Φe(x) ' µy Texy. This function produces the whole computation
instead of only its outcome.

4 Recursively Enumerable Sets

A wider class than the recursive sets is of great interest, the class of the recur-
sively enumerable or r.e. sets. This is the most general type of language in the
so-called Chomsky-hierarchy and it will be the most general type of language we
will consider. Recursively enumerable sets can be defined in various ways. They
can be defined as the ranges of partial recursive functions, as the domains of
partial recursive functions (i.e. as the domain on which the function is defined)
and, thirdly as the ranges of total recursive functions, but then the empty set
has to be added as an additional possibility. The last possibility is the most
intuitive, one can imagine the set as being generated by some recursive process.
The set (of codes) of the provable formulas of some finitely axiomatizable theory
is a natural example. But the standard way is as the domains of the partial re-
cursive functions. Naturally, they are the coded by the number of the function:
We = {n |ϕe(n)↓}. In that case e is called an index for the language L = We.
Tu put it in the form of a theorem:

3

Definition 1 A subset A of the natural numbers is recursively enumerable (r.e.)
iff

1. A is dom(F) for F partial recursive, i.e. A = {x | ∃y Texy} for some e in
which case we write A = We, OR

2. A is range(F) for F partial recursive, i.e. A = {u | ∃x, y (Texy∧u = Uy)}
for some e, OR

3. A is range(F) for F total recursive, or A = ∅.

By means of the coding we can consider languages over arbitrary alphabets as
(r.e.) subsets of the natural numbers. The set Σ∗ of all strings over Σ is then
simply N. It is a very important fact that there exist sets that are recursively
enumerable but not recursive. We will give an example presently. Let us first
note some important closure properties of recursive and r.e. sets.

Theorem 2

1. The recursive sets are closed under intersection, union and complement.
This means that the formulas describing the corresponding predicates are
closed under all the usual connectives. These predicates are also closed
under bounded quantification, i.e. quantifiers of the form ∀x ≤ F (y) and
∃x ≤ F (y) for some recursive function F .

2. The r.e. sets are closed under intersection and union. This means that the
formulas describing the corresponding predicates are closed under ∧ and
∨. These predicates are also closed under bounded quantification.

3. (Definition by cases, example) If G,H and K are (partial) recursive func-
tions and A and B are recursive predicates, then F , defined by the follow-
ing equations, is a (partial) recursive function.

F (x) = G(x) if A(x)

F (x) = H(x) if ¬A(x) and B(x)

F (x) = K(x) else.

There are important connections between recursively enumerable and recursive
sets.

Theorem 3 (Post’s theorem) The set A is recursive iff both A and its comple-
ment A = N−A are recursively enumerable.

The idea of the proof is that one can decide the membership of n in a set A
if both A and A are recursively enumerable by simultaneously generating the
elements of both A and A and noting in which of the two n turns up. Another
important characterization of r.e. sets is given by the following.

Theorem 4 The set A is recursively enumerable iff there exists a 2-place re-
cursive predicate B such that x ∈ A iff ∃y B(x, y).

4

The proof from right to left of this theorem consists of noting that the
function ϕ(x)' µy B(x, y) is partial recursive and has as its domain the set
{x | ∃y B(x, y)}. Here µy B(x, y) means the smallest y such that B(x, y) if
such a value exists and undefined otherwise; it can be computed by checking
B(x, 0), B(x, 1), B(x, 2), Hence, in general, partial recursive functions are
closed under the notation µy (y ≤ F (x) ∧B(x, y)).

One should also note that two or more existential quantifiers in sequence
can be contracted to one by means of the pairing function. For example, if B is
recursive, ∃y, z B(x, y, z) is r.e. because it is equivalent to ∃y B(x, j1(y), j2(y))
(look e.g. at Definition ??(2)).

Theorem 5 The set K = {x |ϕx(x) ↓} is r.e., but not recursive.

Proof The set K is r.e., because it is the domain of a partial recursive func-
tion. Assume that K is recursive. Then K is recursive as well, and hence the
domain of some partial recursive function ϕe. Applying ϕe to e itself leads to a
contradiction: ϕe(e) ↓ iff ϕe(e) ↑. �

Of course, this shows more in general that the so-called halting problem, to
determine of a certain machine (or function) whether it stops on a certain input,
is undecidable. For this reason, it is sometimes good to have a closer look and
rely on the fact that (partial) recursive functions are computed in stages. We will
write ϕs

e(x) = y to state that the value of ϕe(x) is y and that the computation
has been completed by the s-th stage. Under such an interpretation ϕs

e(x)↓ is
a decidable predicate. Also r.e. sets can then be thought of as being generated
in stages: We,s = {x |ϕs

e(x)↓} is always a finite, decidable set, and the We,s are
weakly increasing in the s so that We is the limit of the We,s.

A more complicated example of r.e. sets which are not recursive is given by
the following.

Theorem 6 There exist two disjoint r.e. sets A and B which are recursively
inseparable, i.e. there exists no recursive C such that A ⊆ C and C ∩B = ∅.

5 Two Important Theorems of RT

For completeness’ sake we now give the two most important theorems of ele-
mentary recursion theory. The S-m-n-theorem is not used explicitly by us, but
it is actually needed to prove things that we assume without proof like the fact
that indices of the We coding finite sets can be found recursively in the codes of
these finite sets. We will give one example of the use the recursion theorem to
get the feeling of this magical theorem, but we will hardly use it in the course.

Theorem 7 (S-m-n-theorem) There exists a recursive function S such that,
for each e, x, y, ϕS(e,x)(y) ' ϕe(x, y).

Theorem 8 (Recursion Theorem) For each total recursive function F there
exists an e such that ϕF (e) = ϕe.

5

Lemma 9 For each infinite r.e. set We there exists a strictly increasing total
recursive function F such that range(F) ⊆We.

Proof Let 〈s0, x0〉, 〈s1, x1〉, 〈s2, x2〉, . . . enumerate all pairs of natural numbers
recursively. Define F (0) to be xi if 〈si, xi〉 is the first member of the sequence
such that ϕsi

e (xi) is defined, and define F (x+ 1) to be xj if 〈sj , xj〉 is the first
member of the sequence such that ϕ

sj
e (xj) is defined for which xj > F (x).

One may note that F (0) can be taken to be arbitrarily large, that range(F)
is a recursive set, and that in case We is finite the definition of F still works,
but gives a partial recursive function. �

Definition 2 An index e is minimal if for no f < e, Wf = We.

Lemma 10 If A is an r.e. set consisting of minimal indices, the A is finite.

Proof Assume that A is an r.e. set consisting of minimal indices and A is
infinite. By Lemma ?? there exists a strictly increasing, recursive F with
range(F) ⊆ A. We noted that F (0) can be taken to be greater than 0, which
means that, for each x, F (x) > x. Apply the recursion theorem to obtain an e
such that ϕF (e) = ϕe and hence that WF (e) = We. Then F (e) > e contradicts
the fact that F (e) as a member of A is supposed to be minimal. �

6

