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Definition 1 An alphabet Σ is a finite set of letters. Σ∗ is the set of all finite
sequences over Σ.

If the alphabet is {a, b}, we write, e.g., aba for the sequence 〈a, b, a〉. The set
of alls sequences over Σ can be identified with the natural numbers by coding.
If X,Y ⊆ Σ∗, we write XY for {xy |x ∈ X, y ∈ Y }. X∗ is the set of all
finite sequences over X including the empty sequence, X+ the set of all finite
sequences over X not including the empty sequence.

Definition 2 A regular expression over Σ is defined inductively by:

1. If a ∈ Σ, then a is a regular expression over Σ,

2. If p, q are regular expressions over Σ, then pq, p ∪ q and p∗ are regular
expressions over Σ.

Each regular expression defines a regular language.

Definition 3

1. If a ∈ Σ, then L(a) = {a},

2. L(pq) = {xy |x ∈ p, y ∈ q},

3. L(p ∪ q) = L(p) ∪ L(q),

4. L(p∗) = (L(p))∗.

It is a well-known fact that the regular languages are exactly the ones ac-
cepted by finite automata. It follows from Gold’s second theorem that not all
regular languages are identifiable.

The restricted regular expressions come in two kinds, the restricted regu-
lar ∗-expressions are obtained by deleting the operation ∪, the restricted regular
+-expressions by deleting the operation ∪ and replacing ∗ by +. The class of all
erasing languages of restricted regular ∗-expressions is written RREGΣ

∗ . The
class of all non-erasing languages of restricted regular +-expressions is written
RREGΣ

+, and is of course obtained by replacing the clause L(p∗) = (L(p))∗ by
L(p+) = (L(p))+.
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Definition 4 A class of languages L has finite thickness if for each w there are
only finitely many L ∈ L such that w ∈ L.

Theorem 1 RREGΣ
+ has finite thickness.

Proof By induction on the (literal) length of w. We will use the easily checked
fact that X+ = X++.

1. w has length 1, w = a ∈ Σ. Note first that a 6∈ XY for any X,Y , since
any element of XY has at least length 2. Also, a ∈ X ⇔ a ∈ X+. So, if
a ∈ L, then L has to be L(a) or L(a+).

2. w has length > 1. w can only be a member of L+ if w is obtained by
repetition of some smaller subsequence u of w (ignoring the case that
w ∈ L). There can only be finitely many of such u, and to each of those
the induction hypothesis applies.

w can only be a member of L1L2 if w = uv, u ∈ L1, v ∈ L2. Of course,
w can only be split into such u and v in finitely many ways, and to each
such u, v the induction hypothesis applies.

�

We can conclude that RREGΣ
+ is identifiable. We we will see later that the

same thing does not hold for RREGΣ
∗ .

Theorem 2 If uniformly recursive L is of finite thickness, then L is effectively
identifiable.

Proof We will assume that L is enumerated by a 1-1 recursive function. Let
t be a text for Li. Note that, under the assumption of 1-1 enumeration, there
exists n0 such that, for all j with t(0) ∈ Lj , j≤n0.

Define M(t[n]) = the standard code for Lj1 ∩ · · · ∩ Ljk where Lj1 , . . . , Ljk

are the only languages with ji ≤ n such that content(t[n]) ⊆ Ljm (m ≤ k).
Note that, if n ≥ n0 no new languages occur. Note also that, if n ≥ n0, jm ≤

n0 for all m. Note also that, if Li 6⊆ Lj , then at a certain point content(t[n]) 6⊆
Lj so that Lj will be dropped. So, from acertain poiunt onwards Lj1 , . . . , Ljk =
{Lj |Li ⊆ Lj}. That means that Lj1 ∩ · · · ∩ Ljk = Li, i.e. M(t[n] is a code for
Lj . Lj is identified in the limit. �

Definition 5 A uniformly recursive class L has recursive thickness if there is
a recursive function F such that, for each w, F (w) is the canonical code k for
the finite set Dk such that w ∈ Li iff i ∈ Dk.

Theorem 3 If a uniformly recursive class L has recursive finite thickness, then
L is identifiable by an effective incremental learner.

The proof uses the canonical indices for finite sets. We assume that these are
given in such a way that there are recursive functions U, I such that DU(k,l) =
Dk ∪Dl, DI(k,l) = Dk ∩Dl, a recursive function card such that card(k) = the
cardinality of Dk, that n ∈ Dk is recursive, that singleton is a recursive function
such that Dsingleton(k) is the set containing only k etc., etc.
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