Some learning of regular languages

Nina Gierasimczuk Dick de Jongh

February 22th, 2013

Definition 1 An alphabet Σ is a finite set of letters. Σ^* is the set of all finite sequences over Σ .

If the alphabet is $\{a, b\}$, we write, e.g., *aba* for the sequence $\langle a, b, a \rangle$. The set of alls sequences over Σ can be identified with the natural numbers by coding. If $X, Y \subseteq \Sigma^*$, we write XY for $\{xy \mid x \in X, y \in Y\}$. X^* is the set of all finite sequences over X including the empty sequence, X^+ the set of all finite sequences over X not including the empty sequence.

Definition 2 A regular expression over Σ is defined inductively by:

- 1. If $a \in \Sigma$, then a is a regular expression over Σ ,
- 2. If p,q are regular expressions over Σ , then pq, $p \cup q$ and p^* are regular expressions over Σ .

Each regular expression defines a regular language.

Definition 3

- 1. If $a \in \Sigma$, then $L(a) = \{a\}$,
- 2. $L(pq) = \{xy \mid x \in p, y \in q\},\$
- 3. $L(p \cup q) = L(p) \cup L(q)$,
- 4. $L(p^*) = (L(p))^*$.

It is a well-known fact that the regular languages are exactly the ones accepted by *finite automata*. It follows from Gold's second theorem that not all regular languages are identifiable.

The restricted regular expressions come in two kinds, the restricted regular *-expressions are obtained by deleting the operation \cup , the restricted regular +-expressions by deleting the operation \cup and replacing * by +. The class of all erasing languages of restricted regular *-expressions is written $RREG_*^{\Sigma}$. The class of all non-erasing languages of restricted regular +-expressions is written $RREG_+^{\Sigma}$, and is of course obtained by replacing the clause $L(p^*) = (L(p))^*$ by $L(p^+) = (L(p))^+$. **Definition 4** A class of languages \mathcal{L} has finite thickness if for each w there are only finitely many $L \in \mathcal{L}$ such that $w \in L$.

Theorem 1 $RREG_{+}^{\Sigma}$ has finite thickness.

Proof By induction on the (literal) length of w. We will use the easily checked fact that $X^+ = X^{++}$.

- 1. w has length 1, $w = a \in \Sigma$. Note first that $a \notin XY$ for any X, Y, since any element of XY has at least length 2. Also, $a \in X \Leftrightarrow a \in X^+$. So, if $a \in L$, then L has to be L(a) or $L(a^+)$.
- 2. w has length >1. w can only be a member of L^+ if w is obtained by repetition of some smaller subsequence u of w (ignoring the case that $w \in L$). There can only be finitely many of such u, and to each of those the induction hypothesis applies.

w can only be a member of L_1L_2 if w = uv, $u \in L_1$, $v \in L_2$. Of course, w can only be split into such u and v in finitely many ways, and to each such u, v the induction hypothesis applies.

We can conclude that $RREG_{+}^{\Sigma}$ is identifiable. We we will see later that the same thing does not hold for $RREG_{*}^{\Sigma}$.

Theorem 2 If uniformly recursive \mathcal{L} is of finite thickness, then \mathcal{L} is effectively identifiable.

Proof We will assume that \mathcal{L} is enumerated by a 1-1 recursive function. Let t be a text for L_i . Note that, under the assumption of 1-1 enumeration, there exists n_0 such that, for all j with $t(0) \in L_j$, $j \leq n_0$.

Define M(t[n]) = the standard code for $L_{j_1} \cap \cdots \cap L_{j_k}$ where L_{j_1}, \ldots, L_{j_k} are the only languages with $j_i \leq n$ such that $content(t[n]) \subseteq L_{j_m}$ $(m \leq k)$.

Note that, if $n \ge n_0$ no new languages occur. Note also that, if $n \ge n_0, j_m \le n_0$ for all m. Note also that, if $L_i \not\subseteq L_j$, then at a certain point $content(t[n]) \not\subseteq L_j$ so that L_j will be dropped. So, from acertain point onwards $L_{j_1}, \ldots, L_{j_k} = \{L_j \mid L_i \subseteq L_j\}$. That means that $L_{j_1} \cap \cdots \cap L_{j_k} = L_i$, i.e. M(t[n]) is a code for L_j . L_j is identified in the limit.

Definition 5 A uniformly recursive class \mathcal{L} has recursive thickness if there is a recursive function F such that, for each w, F(w) is the canonical code k for the finite set D_k such that $w \in L_i$ iff $i \in D_k$.

Theorem 3 If a uniformly recursive class \mathcal{L} has recursive finite thickness, then \mathcal{L} is identifiable by an effective incremental learner.

The proof uses the canonical indices for finite sets. We assume that these are given in such a way that there are recursive functions U, I such that $D_{U(k,l)} = D_k \cup D_l$, $D_{I(k,l)} = D_k \cap D_l$, a recursive function card such that card(k) = the cardinality of D_k , that $n \in D_k$ is recursive, that singleton is a recursive function such that $D_{singleton(k)}$ is the set containing only k etc., etc.