Some learning of regular languages

Nina Gierasimczuk Dick de Jongh
February 22th, 2013

Definition 1 An alphabet X is a finite set of letters. * is the set of all finite
sequences over X.

If the alphabet is {a, b}, we write, e.g., aba for the sequence (a, b, a). The set
of alls sequences over 3 can be identified with the natural numbers by coding.
If X,V C ¥*, we write XY for {zy|z € X,y € Y}. X* is the set of all
finite sequences over X including the empty sequence, X the set of all finite
sequences over X not including the empty sequence.

Definition 2 A regular expression over X is defined inductively by:
1. If a € X, then a is a regular expression over X,

2. If p,q are regular expressions over %, then pq, p U q and p* are reqular
expressions over .

Each regular expression defines a regular language.
Definition 3

1. If a € X, then L(a) = {a},

2. L(pq) ={zy |z € p,y € q},

3. L(pUq) = L(p) U L(q),

4. L(p*) = (L(p))"-

It is a well-known fact that the regular languages are exactly the ones ac-
cepted by finite automata. It follows from Gold’s second theorem that not all
regular languages are identifiable.

The restricted regular expressions come in two kinds, the restricted requ-
lar *-expressions are obtained by deleting the operation U, the restricted regular
T _expressions by deleting the operation U and replacing * by *. The class of all
erasing languages of restricted regular *-expressions is written RREG . The
class of all non-erasing languages of restricted reqular T -expressions is written
RREG?, and is of course obtained by replacing the clause L(p*) = (L(p))* by

L(p™) = (L(p)™*.



Definition 4 A class of languages L has finite thickness if for each w there are
only finitely many L € L such that w € L.

Theorem 1 RREGE has finite thickness.

Proof By induction on the (literal) length of w. We will use the easily checked
fact that X+ = X++.

1. w has length 1, w = a € 3. Note first that a ¢ XY for any X,Y, since
any element of XY has at least length 2. Also, a € X < a € XT. So, if
a € L, then L has to be L(a) or L(a™).

2. w has length >1. w can only be a member of L if w is obtained by
repetition of some smaller subsequence u of w (ignoring the case that
w € L). There can only be finitely many of such u, and to each of those
the induction hypothesis applies.

w can only be a member of Ly Ly if w = uv, u € Ly, v € Ly. Of course,
w can only be split into such u and v in finitely many ways, and to each
such u, v the induction hypothesis applies.

O

‘We can conclude that RREGE is identifiable. We we will see later that the
same thing does not hold for RREG *.

Theorem 2 If uniformly recursive L is of finite thickness, then L is effectively
identifiable.

Proof We will assume that £ is enumerated by a 1-1 recursive function. Let
t be a text for L;. Note that, under the assumption of 1-1 enumeration, there
exists ng such that, for all j with ¢(0) € L;, j <nq.

Define M (t[n]) = the standard code for L; N---N L;, where L; ,...,L;
are the only languages with j; < n such that content(t[n]) C L, (m < k).

Note that, if n > ng no new languages occur. Note also that, if n > ng, jm, <
no for all m. Note also that, if L; ¢ L, then at a certain point content(t[n]) Z
L; so that L; will be dropped. So, from acertain poiunt onwards L;,,...,L; =
{L;|L; € L;}. That means that L;, N---NL;, = L;, i.e. M(t[n] is a code for
L;. Lj is identified in the limit. O

k

Definition 5 A uniformly recursive class £ has recursive thickness if there is
a recursive function F such that, for each w, F(w) is the canonical code k for
the finite set Dy, such that w € L; iff i € Dy.

Theorem 3 If a uniformly recursive class L has recursive finite thickness, then
L is identifiable by an effective incremental learner.

The proof uses the canonical indices for finite sets. We assume that these are
given in such a way that there are recursive functions U, I such that Dy ) =
Dy U Dy, Dyxy = Dp N Dy, a recursive function card such that card(k) = the
cardinality of Dy, that n € Dy, is recursive, that singleton is a recursive function
such that Dgngicton(k) is the set containing only k etc., etc.



