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Definition 1 A learning function M is recursive if M is a recursive function.

We also refer to recursive identifiability as effective identifiability, etc.

Definition 2 A learning function M is consistent if, for each σ, content(σ) ⊆
LM(σ).

A consistent learner is one who never makes conjectures that contradict the
input. That is not as self-evident a requirement as it might seem. In the first
place it may be undecidable whether an input belongs to a certain language,
which makes it of course difficult to be consistent. But there may be other
reasons as well not to be consistent, in practice the learner can concentrate e.g.
on simple inputs and ignore complicated ones in a case in which simple ones are
sufficient for identification.

Theorem 1 If L is identifiable, then L is identifiable by a consistent learner.

Proof This follows from the proof of the characterization theorem: the learner
constructed in the proof of theorem is not directly consistent but can be made
so by changing

M(σ) = µe′(e′ is a number for some L′ ∈ L such that
DL′ ⊆ content(σ) ⊆ L′) if such e′ exists, and 0 otherwise.

into

M(σ) = µe′(e′ is a number for some L′ ∈ L such that
DL′ ⊆ content(σ) ⊆ L′) if such e′ exists, and
µe′(e′ is a number for some L′ ∈ L such that
content(σ) ⊆ L′) otherwise. �

On the other hand, the combination of recursivity and consistency is restrictive.

Theorem 2 If M is a consistent, recursive learner and M identifies L, then L
is recursive.
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Proof Let M be consistent and recursive learner and identify L. Suppose
σ is a locking sequence for M and L. Consider M(σ∧〈x〉) for arbitrary x:
M(σ∧〈x〉) = M(σ) if x ∈ L since σ is locking and M(σ∧〈x〉) 6= M(σ) if x 6∈ L
since M is consistent. Then L is recursive because M is. �

Definition 3 A learning function M is conservative if, for each σ and x,
content(σ∧〈x〉) ⊆ LM(σ) implies M(σ∧〈x〉) = M(σ).

Again it can be seen immediately that conservativity by itself is not restric-
tive, the learner defined in the proof of the characterization theorem is conser-
vative. Later we will see that the combination with recursivity is restrictive.

An incremental learner (also called memory-limited) is one who does not act
on the sequence of all previous inputs but only on the last one. This is a very
efficient way of learning in practice. The learner is allowed to use its own last
conjecture.

Definition 4 A learner M is called incremental if, for all σ, τ, x, if M(σ) =
M(τ), then M(σ∧〈x〉) = M(τ∧〈x〉).

Theorem 3 There exits an identifiable collection of languages that is not iden-
tifiable by an incremental learner.

Proof Take L to be the collection containing

1. The set E of all even numbers,

2. The languages Ln = E ∪ {2n+ 1} for each n,

3. The languages L′
n = E ∪ {2n+ 1} − {2n} for each n.

The collection L is identifiable. Let us give an informal description of the learner
M . M conjectures E until a number 2n + 1 is encountered. Then M switches
to L′

n, except when 2n is part of the input already (memory!), in which case
M switches to Ln. Later M switches from L′

n to Ln when 2n is encountered as
well.

If M is an incremental learner this fails however, M will not be able to
”remember” whether 2n has shown up or not. Let σ be a locking sequence for
such an M and E, and take some 2n 6∈ content(σ) (there are of course infinitely
many of those). Then M(σ∧〈2n〉) = M(σ) because 2n is even. The memory-
limitedness of M then implies M(σ∧〈2n〉∧〈2n + 1〉) = M(σ∧〈2n + 1〉). But
then M will treat the two texts σ∧〈2n〉∧〈2n + 1〉, 0, 2, 4, . . . , 2n − 2, 2n + 2, . . .
and σ∧〈2n+ 1〉, 0, 2, 4, . . . , 2n− 2, 2n+ 2, . . . in the same way although they are
texts for the different languages Ln and L′

n, contradicting the assumption that
M identifies L. �

It is interesting that the limitations of incrementality can be overcome by
requiring more informative text.
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Definition 5 A text t for L is called a fat text for L if each member of L occurs
infinitely many times in t.

Example 4 The L of the proof of Theorem 3 can be identified by an incremental
learner on fat text: if only fat text is presented to M , M identifies L.

Proof Here is a description of an incremental learner M that identifies L. M
conjectures E until a number 2n + 1 is encountered. Then M switches to L′

n

Later, M switches from L′
n to Ln if 2n is encountered as well. The difference

with the successful learner of the previous proof is that, if the text t is fat, M
need not ”remember” that 2n has occurred before, if it has it will occur again.
�

Actually, the shortcomings of incremental learners can in all cases be over-
come by fat text (see Osherson et al, p. 111), but that is rather complicated.
To show the restrictiveness of effective identification we turn to r.e. sets because
the examples there are simpler.

Theorem 5 There exists a (recursively enumerable) family of sets L which is
identifiable but not by a recursive function, namely the family L = {K∪{x} |x ∈
N}.

Before giving the proof we first need a recursion-theoretic lemma.

Lemma 6 If X is an r.e. set and X = {x | ∃y Bxy} with B recursive, then X
is recursive.

Proof If X = {x | ∃y Bxy}, then X is r.e., and if both X and X are r.e., then,
by Post’s theorem, X is recursive. �

Proof of Theorem 5. Let M be recursive and identify L. By the fact that
K is r.e. but not recursive and the lemma above, it is sufficient to show that
K = {x | ∃y Bxy} with B recursive, to obtain a contradiction. Let K be enu-
merated effectively as k1, k2, k3, . . . and let σ be a locking sequence for M and
K. Consider the texts tx = σ∧〈x〉∧k1, k2, k3, . . . . Note that, for each x, tx is a
text for K ∪ {x} = Lx. So, we have:

If x∈K, then K ∪{x} = K. So, since σ is a locking sequence for M and K, for
each n, M(σ∧〈x, k1, k2, . . . , kn〉) = M(σ).

If x 6∈K, then K ∪ {x} = Lx 6= K. So, since M identifies Lx, for some n,
M(σ∧〈x, k1, k2, . . . , kn〉) 6= M(σ).

Thus, x ∈ K ⇐⇒ ∃y(M(σ∧〈x, k1, k2, . . . , ky)〉 6= M(σ)), we have found the
required Bxy as M(σ∧〈x, k1, k2, . . . , ky〉) 6= M(σ). �

Theorem 7 There exists an L such that L is identifiable effectively and by an
incremental learner, but not by an incremental, recursive learner.
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Proof Take L to consist of the following languages

1. 2K = {2n |n ∈ K},

2. Ln = 2K ∪ {2n+ 1} for each n,

3. L′
n = 2K ∪ {2n+ 1} ∪ {2n} for each n.

To begin with, L is identified by incremental learner M1. Learner M1 proceeds
informally as follows: it conjectures 2K until some 2n + 1 is encountered, or
some 2n for some n 6∈ K (the latter is a non-effective decision!).

In the first case, M1 switches to Ln until 2n is encountered; then it switches
to L′

n, which can be done incrementally, because the last conjecture was Ln.
In the second case, the language can only be L′

n and M1 switches to that
conjecture and sticks to it.

Also, L is identified by recursive learner M2. Learner M2 proceeds by con-
jecturing 2K until some 2n+ 1 is encountered. Then it switches to Ln, except
when 2n has been seen already, then it switches to L′

n (non-incrementally), and
it switches to L′

n later as well when it sees 2n.

But L cannot be identified by an incremental, effective learner M . Suppose
M does this, and σ is a locking sequence for M and 2K. For all 2n ∈ 2K,
M(σ∧〈2n〉) = M(σ). Note that the predicate M(σ∧〈2n〉) = M(σ) is recursive,
but 2n ∈ 2K is not. Therefore, these two predicates cannot be co-extensive:
there have to exist 2n 6∈ 2K for which also M(σ∧〈2n〉) = M(σ). Pick one (we do
this, not M !). Since M is incremental, M(σ∧〈2n〉∧〈2n+ 1〉) = M(σ∧〈2n+ 1〉).
Let s be a text for 2K. Then M will treat the texts σ∧〈2n〉∧〈2n+ 1〉∧s and
σ∧〈2n+ 1〉∧s in the same way, but those are texts for the distinct languages L′

n

and Ln. �
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