FIRST-ORDER FRAMEWORK OF INQUIRY

Nina Gierasimczuk

Institute for Logic, Language and Computation University of Amsterdam

FLT Course, MoL Spring 2013 March 19th, 2013

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Martin, E., and Osherson, D. (1997). Scientific Discovery Based on Belief Revision, The Journal of Symbolic Logic, Vol. 62, No. 4, pp. 1352-1370.

Martin, E., and Osherson, D. (1998). Elements of Scientific Inquiry, Cambridge: MIT Press.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

SCIENTIFIC STRATEGY

Scientific strategy = a class of scientists

Definition

A strategy is canonical for a class C of problems just in case every solvable problem in C is solved by some scientist in this strategy.

Is a strategy reliable enough?

=

Is a class of scientists it canonical for a class C of (interesting) problems?

イロン 不同と 不同と 不同とう

・ロン ・四 と ・ ヨン ・ ヨン …

э.

FIRST-ORDER PARADIGM: LANGUAGE I

To obtain the set of formulas \mathcal{L}_{form} , we fix:

Sym — a countable, decidable set of predicates and function symbols. Var — a countably infinite set of variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

FIRST-ORDER PARADIGM: LANGUAGE II

Further notation:

 $Var = \{v_i \mid i \in \mathbb{N}\}.$

 $\mathcal{L}_{sen} \subseteq \mathcal{L}_{form}$ — the set of sentences (no free variables).

 $\mathcal{L}_{\textit{basic}} \subseteq \mathcal{L}_{\textit{form}}$ — the set of atomic formulas and the negations thereof.

if $\varphi \in \mathcal{L}_{form}$, then $Var(\varphi)$ is the set of free variables in φ .

 \exists -formula is any formula equivalent to a formula in prenex normal form whose quantifier prefix is limited to existentials. Similarly for $\exists \forall$, etc.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト … ヨ

FIRST-ORDER PARADIGM: STRUCTURES

- Countable (finite or denumerable) structures.
- Structure S is a model of a set of formulas $\Gamma \subseteq \mathcal{L}_{form}$ iff there is an assignment $h: Var \to |S|$, with $S \models \Gamma[h]$.
- The class of models of $\Gamma \subseteq \mathcal{L}_{form}$ is denoted $MOD(\Gamma)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

FIRST-ORDER PARADIGM: COMPONENTS

- Worlds.
- Problems.
- Environments.
- Scientists.
- Success.

イロト 不得 トイヨト イヨト

= 900

Worlds

All countable structures that interpret Sym.

Nina Gierasimczuk First-order framework of inquiry

・ロン ・四 と ・ ヨ と ・

= √Q (~

A proposition is a non-empty class of structures.

A problem is a collection of disjoint propositions.

EXAMPLE

Assume **Sym** contains only a single binary predicate. Let: P_0 be a collection of strict total orders with a least point, and P_1 be a collection of strict total orders without a least point.

Then $\mathbf{P} = \{P_0, P_1\}$ is a problem.

イロト 不得 トイヨト イヨト

Environment

Sym is observational.

So is the domain: the elements are given temporary names.

DEFINITION

Given structure S, a full assignment to S is any mapping of *Var* onto |S|.

DEFINITION

Let structure S and a full assignment h to S be given.

- An environment for S and h is a sequence e such that $range(e) = \{\beta \in \mathcal{L}_{basic} \mid S \models \beta[h]\}.$
- **2** An environment for S is an environment for S and h, for some full assignment h to S.
- 3 An environment is an environment for some structure.
- **4** An environment for proposition P is an environment for some $S \in P$.
- **(4)** An environment for problem **P** is an environment for some $P \in \mathbf{P}$.

ENVIRONMENTS: EXAMPLES

Suppose **Sym** = {*R*}, structure $|S| = \mathbb{N}$, *R* is in fact <.

EXAMPLE

h is a full assignment to S such that $\{(v_i, i) \mid i \in \mathbb{N}\}$. Then one environment for S and *h* looks like this:

$$v_3 \neq v_4, \ \neg Rv_0v_0, \ Rv_1v_9, \ v_{11} = v_{11}, \ v_0 \neq v_3, \dots$$

EXAMPLE

g is a full assignment to S such that $\{(v_{2i}, i), (v_{2i+1}, i) \mid i \in \mathbb{N}\}$. Then one environment for S and h looks like this:

$$v_2 = v_3, \ \neg R v_4 v_5, \ R v_1 v_9, \ v_{11} = v_{11}, \ v_0 \neq v_3, \ldots$$

イロト 不得 トイヨト イヨト

Environments and Structure Isomorphism

Lemma

Let two structures S and T be given.

- if S and T are isomorphic then the set of environments for S is identical to the set of environments for T.
- ${\it 2}$ if some environment is both for S and T then S and T are isomorphic.

(人間) とうり くうり

3

ENVIRONMENTS: NOTATION

- Take environment e and $k \in \mathbb{N}$. Then:
 - e_k is k-th element of e, and
 - e[k] is the initial segment of e of length k + 1.
- SEQ denotes the collection of proper initial segments of any environment.
- Let σ ∈ SEQ, if σ is non-void, then ∧ σ is the conjunction of the formulas in range(σ); if σ is void, then ∧ σ is ∀v₀(v₀ = v₀).
- Var(σ) is the set of all free variables in σ.
- Given a proposition P and $\sigma \in SEQ$, we say that σ is for P just in case $\bigwedge \sigma$ is satisfiable in some member of P (similarly for **P**).

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

A scientist Ψ is a partial or total mapping from SEQ into classes of structures.

If scientist Ψ is defined on $\sigma \in SEQ$, then $\Psi(\sigma)$ is a collection of structures, thus a proposition.

イロト 不得 トイヨト イヨト

-

Definition

Let scientist Ψ be given.

- Let environment e for proposition P be given. We say that Ψ solves P in e just in case for cofinitely many k, Ø ≠ Ψ(e|k) ⊆ P. We say that Ψ solves P just in case Ψ solves P in every environment for P.
- ② Let problem P be given. We say that Ψ solves P just in case Ψ solves every member of P. In this case we say that P is solvable.

イロト イポト イヨト イヨト

Solvability: Examples

EXAMPLE

Sym={H}, where *H* is a unary predicate. Given $n \in \mathbb{N}$, let P_n be the class of all structures S such that $card(H^S) = n$. $\mathbf{P} = \{P_n \mid n \in \mathbb{N}\}$ is solvable.

EXAMPLE

Sym={R}, where *R* is a binary predicate. Set $P_y = \{ \langle \mathbb{N}, \prec \rangle \mid \prec \text{ is isomorphic to } \omega \},$ $P_n = \{ \langle \mathbb{N}, \prec \rangle \mid \prec \text{ is isomorphic to } \omega^* \}.$ $\mathbf{P} = \{ P_y, P_n \}$ is solvable.

イロト 不得 トイヨト イヨト

FIRST STEP TOWARDS CHARACTERIZATION: LOCKING PAIRS

Locking pairs:

Definition

Let scientist Ψ , proposition P, $S \in P$, $\sigma \in SEQ$, and finite assignment $a : Var \to |S|$ be given. We say that (σ, a) is a *locking pair* for Ψ , S and P just in case the following conditions hold.

- domain(a) \subseteq Var(σ)
- ${\bf 0} \ {\cal S} \models \bigwedge \sigma[{\it a}]$
- So For every τ ∈ SEQ, if S ⊨ ∃x ∧(σ * τ)[a], where x̄ contains the variables in Var(τ) − domain(a), then Ø ≠ Ψ(σ * τ) ⊆ P.

Lemma

Let scientist Ψ , proposition P, and $S \in P$ be given. Suppose that scientist Ψ solves P in every environment for S. Then there is a locking pair for Ψ , S, and P.

・ロト ・ 一下・ ・ ヨト・・ ヨト・・

CHARACTERIZATION: TIP-OFFS

Definition

A $\pi-set$ is any collection of \forall formulas all of whose free variables are drawn from the same finite set.

DEFINITION

Let problem **P** and $P \in \mathbf{P}$ be given. A tip-off for $P \in \mathbf{P}$ is a countable collection **t** of π -sets such that:

- **(**) for every $S \in P$ and full assignment h to S, there is $\pi \in \mathbf{t}$ with $S \models \pi[h]$;
- ② for all $U \in P' \in \mathbf{P}$ with $P' \neq P$, all full assignments g to U, and all $\pi \in \mathbf{t}$, $U \not\models \pi[g]$.

If every member of P has a tip-off in P, then we say that P has tip-offs.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

CHARACTERIZATION

PROPOSITION

If problem P is countable and has tip-offs, then P is solvable.

PROPOSITION

Every solvable problem has tip-offs.

э

2 INQUIRY VIA BELIEF REVISION

Nina Gierasimczuk First-order framework of inquiry

・ロト ・ 四ト ・ モト ・ モト …

3

How to choose an interesting strategy?

Let's look at some rationality postulates.

Inquiry within the first-order paradigm as a process of rational belief revision in the light of data, starting from a background theory.

The scientist starts her inquiry with a set of formulas X - it represents her provisional beliefs prior to inquiry. The new data σ modifies X according to a iced scheme of belief revision, resulting in $X + \sigma$.

The idea here is similar as in AGM.

We start off with $X \subset \mathcal{L}_{form}$ as the state of belief, without assuming X to be deductively closed.

・ロト ・得ト ・ヨト ・ヨト

CONTRACTION

DEFINITION

Let $\varphi \in \mathcal{L}_{form}$ and $B \subseteq \mathcal{L}_{form}$ be given. By a maximal subset of B that fails to imply φ is meant any subset B' of B with the following properties:

- **2** there is no X with $B' \subset X \subseteq B$ and $X \not\models \varphi$.

The class of all maximal subsets of B that fail to imply φ is denoted by $B \perp \varphi$. In particular, if $\models \varphi$ then $B \perp \varphi = \emptyset$, and $\bigcap (B \perp \varphi) = B$.

Lemma

$$\bigcap (B \bot \varphi) = \{ \psi \in B \mid (\forall D \subseteq B) (\text{ if } D \cup \{\psi\} \models \varphi \text{ then } D \models \varphi) \}.$$

DEFINITION

A mapping - from $\mathcal{P}(\mathcal{L}_{form}) \times \mathcal{L}_{form}$ to $\mathcal{P}(\mathcal{L}_{form})$ is a contraction function just in case for all $B \subseteq \mathcal{L}_{form}$ and $\varphi \in \mathcal{L}_{form}$:

 $(B \bot \varphi) \subseteq B \dot{-} \varphi \subseteq B;$

$$\textbf{2} \quad \text{if } \not\models \varphi \text{ then } B - \varphi \not\models \varphi.$$

SPECIAL KINDS OF CONTRACTION

DEFINITION

A contraction function – is stringent just in case there is a strict total ordering \prec of $\mathcal{P}(\mathcal{L}_{\textit{form}})$ such that for all $B \subseteq \mathcal{L}_{\textit{form}}$ and invalid $\varphi \in \mathcal{L}_{\textit{form}}$, $B - \varphi$ is the \prec -least subset of B that does not imply φ .

Proposition

Every stringent contraction function is maxichoice.

イロト イポト イヨト イヨト

REVISION DEFINED FROM CONTRACTION

DEFINITION

A mapping + from $\mathcal{P}(\mathcal{L}_{form}) \times SEQ$ to $\mathcal{P}(\mathcal{L}_{form})$ is revision function just in case there is a contraction function - such that for all $B \subseteq \mathcal{L}_{form}$ and $\sigma \in SEQ$,

$$B \dot{+} \sigma = \begin{cases} B & \text{if } \sigma = \emptyset \\ (B \dot{-} \neg \land \sigma) \cup range(\sigma) & otherwise \end{cases}$$

イロン 不同と 不同と 不同とう

э

REVISION DEFINED FROM CONTRACTION

Lemma

Let revision function $\dot{+}$ be given. Then for all $B \subseteq \mathcal{L}_{form}$ and $\sigma \in SEQ$:

- $B + \sigma \models \bigwedge \sigma.$
- $B \dot{+} \sigma \subseteq B \cup range(\sigma).$
- **i** If $B \not\models \neg \bigwedge \sigma$ then $B \dot{+} \sigma = B \cup range(\sigma)$.
- **4** If σ is non void then $B + \sigma$ is consistent.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

INQUIRY VIA REVISION

$\lambda\sigma$. $B \stackrel{.}{+} \sigma$

Nina Gierasimczuk First-order framework of inquiry

LINGUISTIC SCIENTISTS

DEFINITION

Scientist Ψ is linguistic just in case there is $\psi : SEQ \to \mathcal{P}(\mathcal{L}_f orm)$ such that for all $\sigma \in SEQ$, $\Psi(\sigma)$ is defined iff $\psi(\sigma)$ is defined, and when both are defined $\Psi(\sigma) = MOD(\psi(\sigma))$. In this case, we say that ψ underlies Ψ .

イロン 不同と 不同と 不同とう

э

Scientists Based on Revision

DEFINITION

Let revision function $\dot{+}$ be given. Then $\lambda\sigma.B+\sigma$ is a linguistic scientist, which we qualify as revision-based.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

THE INDUCTIVE POWER OF STRINGENT REVISION

Theorem

There is a stringent revision function $\dot{+}$ with the following property. Let problem **P** be such that for some $Y \subseteq \mathcal{L}_{form}$ and revision function $\dot{\oplus}$, $\lambda \sigma. Y \dot{\oplus} \sigma$ solves **P**. Then there is a consistent $X \subseteq \mathcal{L}_{form}$ such that $\lambda \sigma. Y \dot{+} \sigma$ solves **P**.

・ 同下 ・ ヨト ・ ヨト