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Scientific Strategy

Scientific strategy = a class of scientists

Definition

A strategy is canonical for a class C of problems just in case every solvable
problem in C is solved by some scientist in this strategy.

Is a strategy reliable enough?
=

Is a class of scientists it canonical for a class C of (interesting) problems?
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First-order Paradigm: Language I

To obtain the set of formulas Lform, we fix:

Sym — a countable, decidable set of predicates and function symbols.

Var — a countably infinite set of variables.
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First-order Paradigm: Language II

Further notation:

Var = {vi | i ∈ N}.
Lsen ⊆ Lform — the set of sentences (no free variables).

Lbasic ⊆ Lform — the set of atomic formulas and the negations thereof.

if ϕ ∈ Lform, then Var(ϕ) is the set of free variables in ϕ.

∃-formula is any formula equivalent to a formula in prenex normal form
whose quantifier prefix is limited to existentials. Similarly for ∃∀, etc.
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First-order Paradigm: Structures

Countable (finite or denumerable) structures.

Structure S is a model of a set of formulas Γ ⊆ Lform iff there is an
assignment h : Var → |S|, with S |= Γ[h].

The class of models of Γ ⊆ Lform is denoted MOD(Γ).
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First-order Paradigm: Components

Worlds.

Problems.

Environments.

Scientists.

Success.
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Worlds

All countable structures that interpret Sym.
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Problems

A proposition is a non-empty class of structures.

A problem is a collection of disjoint propositions.

Example

Assume Sym contains only a single binary predicate. Let:
P0 be a collection of strict total orders with a least point, and
P1 be a collection of strict total orders without a least point.

Then P = {P0,P1} is a problem.
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Environment

Sym is observational.

So is the domain: the elements are given temporary names.

Definition

Given structure S, a full assignment to S is any mapping of Var onto |S|.

Definition

Let structure S and a full assignment h to S be given.

1 An environment for S and h is a sequence e such that
range(e) = {β ∈ Lbasic | S |= β[h]}.

2 An environment for S is an environment for S and h, for some full
assignment h to S.

3 An environment is an environment for some structure.

4 An environment for proposition P is an environment for some S ∈ P.

5 An environment for problem P is an environment for some P ∈ P.
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Environments: Examples

Suppose Sym = {R}, structure |S| = N, R is in fact <.

Example

h is a full assignment to S such that {(vi , i) | i ∈ N}. Then one environment
for S and h looks like this:

v3 6=v4, ¬Rv0v0, Rv1v9, v11=v11, v0 6=v3, . . .

Example

g is a full assignment to S such that {(v2i , i), (v2i+1, i) | i ∈ N}. Then one
environment for S and h looks like this:

v2=v3, ¬Rv4v5, Rv1v9, v11=v11, v0 6=v3, . . .
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Environments and Structure Isomorphism

Lemma

Let two structures S and T be given.

1 if S and T are isomorphic then the set of environments for S is identical
to the set of environments for T .

2 if some environment is both for S and T then S and T are isomorphic.
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Environments: Notation

Take environment e and k ∈ N. Then:
ek is k-th element of e, and
e[k] is the initial segment of e of length k + 1.

SEQ denotes the collection of proper initial segments of any environment.

Let σ ∈ SEQ, if σ is non-void, then
∧
σ is the conjunction of the formulas

in range(σ); if σ is void, then
∧
σ is ∀v0(v0 = v0).

Var(σ) is the set of all free variables in σ.

Given a proposition P and σ ∈ SEQ, we say that σ is for P just in case∧
σ is satisfiable in some member of P (similarly for P).
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Scientists

A scientist Ψ is a partial or total mapping from SEQ into classes of structures.

If scientist Ψ is defined on σ ∈ SEQ, then Ψ(σ) is a collection of structures,
thus a proposition.
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Success

Definition

Let scientist Ψ be given.

1 Let environment e for proposition P be given. We say that Ψ solves P in
e just in case for cofinitely many k, ∅ 6= Ψ(e|k) ⊆ P. We say that Ψ
solves P just in case Ψ solves P in every environment for P.

2 Let problem P be given. We say that Ψ solves P just in case Ψ solves
every member of P. In this case we say that P is solvable.
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Solvability: Examples

Example

Sym={H}, where H is a unary predicate. Given n ∈ N, let Pn be the class of
all structures S such that card(HS) = n.
P = {Pn | n ∈ N} is solvable.

Example

Sym={R}, where R is a binary predicate. Set
Py = {〈N,≺〉 | ≺ is isomorphic to ω},
Pn = {〈N,≺〉 | ≺ is isomorphic to ω∗}.
P = {Py ,Pn} is solvable.
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First step towards characterization: locking pairs

Locking pairs:

Definition

Let scientist Ψ, proposition P, S ∈ P, σ ∈ SEQ, and finite assignment
a : Var → |S| be given. We say that (σ, a) is a locking pair for Ψ, S and P just
in case the following conditions hold.

1 domain(a) ⊆ Var(σ)

2 S |=
∧
σ[a]

3 For every τ ∈ SEQ, if S |= ∃x̄
∧

(σ ∗ τ)[a], where x̄ contains the variables
in Var(τ)− domain(a), then ∅ 6= Ψ(σ ∗ τ) ⊆ P.

Lemma

Let scientist Ψ, proposition P, and S ∈ P be given. Suppose that scientist Ψ
solves P in every environment for S. Then there is a locking pair for Ψ, S, and
P.
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Characterization: tip-offs

Definition

A π − set is any collection of ∀ formulas all of whose free variables are drawn
from the same finite set.

Definition

Let problem P and P ∈ P be given. A tip-off for P ∈ P is a countable
collection t of π-sets such that:

1 for every S ∈ P and full assignment h to S, there is π ∈ t with S |= π[h];

2 for all U ∈ P ′ ∈ P with P ′ 6= P, all full assignments g to U , and all π ∈ t,
U 6|= π[g ].

If every member of P has a tip-off in P, then we say that P has tip-offs.
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Characterization

Proposition

If problem P is countable and has tip-offs, then P is solvable.

Proposition

Every solvable problem has tip-offs.
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Introduction

How to choose an interesting strategy?
Let’s look at some rationality postulates.
Inquiry within the first-order paradigm as a process of rational belief revision in
the light of data, starting from a background theory.
The scientist starts her inquiry with a set of formulas X - it represents her
provisional beliefs prior to inquiry. The new data σ modifies X according to a
iced scheme of belief revision, resulting in X +̇σ.
The idea here is similar as in AGM.
We start off with X ⊂ Lform as the state of belief, without assuming X to be
deductively closed.
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Contraction

Definition

Let ϕ ∈ Lform and B ⊆ Lform be given. By a maximal subset of B that fails to
imply ϕ is meant any subset B ′ of B with the following properties:

1 B ′ 6|= ϕ;

2 there is no X with B ′ ⊂ X ⊆ B and X 6|= ϕ.

The class of all maximal subsets of B that fail to imply ϕ is denoted by B⊥ϕ.
In particular, if |= ϕ then B⊥ϕ = ∅, and

⋂
(B⊥ϕ) = B.

Lemma⋂
(B⊥ϕ) = {ψ ∈ B | (∀D ⊆ B)( if D ∪ {ψ} |= ϕ then D |= ϕ)}.

Definition

A mapping −̇ from P(Lform)× Lform to P(Lform) is a contraction function just
in case for all B ⊆ Lform and ϕ ∈ Lform:

1
⋂

(B⊥ϕ) ⊆ B−̇ϕ ⊆ B;

2 if 6|= ϕ then B−̇ϕ 6|= ϕ.
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Special Kinds of Contraction

Definition

A contraction function −̇ is stringent just in case there is a strict total ordering
≺ of P(Lform) such that for all B ⊆ Lform and invalid ϕ ∈ Lform, B−̇ϕ is the
≺-least subset of B that does not imply ϕ.

Proposition

Every stringent contraction function is maxichoice.
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Revision Defined from Contraction

Definition

A mapping +̇ from P(Lform)× SEQ to P(Lform) is revision function just in case
there is a contraction function −̇ such that for all B ⊆ Lform and σ ∈ SEQ,

B+̇σ =

{
B if σ = ∅
(B−̇¬

∧
σ) ∪ range(σ) otherwise
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Revision Defined from Contraction

Lemma

Let revision function +̇ be given. Then for all B ⊆ Lform and σ ∈ SEQ:

1 B+̇σ |=
∧
σ.

2 B+̇σ ⊆ B ∪ range(σ).

3 If B 6|= ¬
∧
σ then B+̇σ = B ∪ range(σ).

4 If σ is non void then B+̇σ is consistent.

Nina Gierasimczuk First-order framework of inquiry



First-order Framework of Inquiry
Inquiry via Belief Revision

Inquiry via Revision

λσ . B +̇ σ
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Linguistic Scientists

Definition

Scientist Ψ is linguistic just in case there is ψ : SEQ → P(Lf orm) such that for
all σ ∈ SEQ, Ψ(σ) is defined iff ψ(σ) is defined, and when both are defined
Ψ(σ) = MOD(ψ(σ)). In this case, we say that ψ underlies Ψ.
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Scientists Based on Revision

Definition

Let revision function +̇ be given. Then λσ.B+̇σ is a linguistic scientist, which
we qualify as revision-based.
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The Inductive Power of Stringent Revision

Theorem

There is a stringent revision function +̇ with the following property. Let
problem P be such that for some Y ⊆ Lform and revision function ⊕̇, λσ.Y ⊕̇σ
solves P. Then there is a consistent X ⊆ Lform such that λσ.Y +̇σ solves P.
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