Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	000000	000

Bargaining Under Strategic Uncertainty

Amanda Friedenberg

Extremely Extremely Preliminary

・ロト・4日×・4日× 日日・900

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
•00000	0000000	000000	0000000	
Bargaining				

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
•00000	0000000	000000	0000000	
Bargaining				

Key Feature of Many Applications:

・ロト < 団ト < 三ト < 三ト < 三ト < ロト < のへの

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Key Feature of Many Applications:

- Employment Contracts
- Trials and Arbitration
- Sovereign Debt
- War
- Legislative Bargaining
- etc.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Key Feature of Many Applications:

- Employment Contracts
- Trials and Arbitration
- Sovereign Debt
- War
- Legislative Bargaining
- etc.

Important Behavioral Feature:

• Failure to Reach Immediate Agreement

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 0
 00000
 000000
 000000
 000
 000

A Source of Bargaining Impasse

Strategic Uncertainty

Set-Up

Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

A Source of Bargaining Impasse

Strategic Uncertainty

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Set-Up

Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

A Source of Bargaining Impasse

Strategic Uncertainty

Two Concerns:

Too Many Predictions?

Set-Up 0000000 Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

A Source of Bargaining Impasse

Strategic Uncertainty

- Too Many Predictions?
 - Sophisticated Reasoning about Strategic Uncertainty?

Set-Up

Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

A Source of Bargaining Impasse

Strategic Uncertainty

- Too Many Predictions?
 - Sophisticated Reasoning about Strategic Uncertainty?
- 2 Too Few Predictions

Set-Up

Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

A Source of Bargaining Impasse

Strategic Uncertainty

- Too Many Predictions?
 - Sophisticated Reasoning about Strategic Uncertainty?
- 2 Too Few Predictions
 - Sophisticated Reasoning about Strategic Uncertainty

Set-Up

Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

A Source of Bargaining Impasse

Strategic Uncertainty

- Too Many Predictions?
 - Sophisticated Reasoning about Strategic Uncertainty?
- 2 Too Few Predictions
 - Sophisticated Reasoning about Strategic Uncertainty
 - Limit predictions to rule out impasse?

Set-Up

Necessity

Sufficiency

The Nature of Strategic Uncertainty 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

A Source of Bargaining Impasse

Strategic Uncertainty

- Too Many Predictions?
 - Sophisticated Reasoning about Strategic Uncertainty?
- 2 Too Few Predictions
 - Sophisticated Reasoning about Strategic Uncertainty
 - Limit predictions to rule out impasse?

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
-	Contract Contract	. .		

Forward Induction Reasoning: Kohlberg, 1981

▲□▶▲□▶▲目▶▲目▶ 三日 のへぐ

Forward Induction Reasoning: Kohlberg, 1981

• Rationalize Past Behavior when Possible

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)
 - Rationality and Common Strong Belief of Rationality

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Introduction Set-Up Necessity 000000 The Nature of Strategic Uncertainty 000

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)
 - Rationality and Common Strong Belief of Rationality

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• Belief about How Others Play the Game

Introduction Set-Up Necessity 000000 The Nature of Strategic Uncertainty 000

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)
 - Rationality and Common Strong Belief of Rationality

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• Belief about How Others Play the Game: b_i^1

The Nature of Strategic Uncertainty 000

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)
 - Rationality and Common Strong Belief of Rationality
- Belief about How Others Play the Game: b_i^1
 - Rationality: Maximize (Conditional) SEU
 - Property of (s_i, b_i^1)

Set-Up

Introduction

000000

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)

Necessity

• Rationality and Common Strong Belief of Rationality

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

- Belief about How Others Play the Game: b_i^1
 - Rationality: Maximize (Conditional) SEU
 - Property of (s_i, b_i^1)
- Belief about Play and b_{-i}^1

Set-Up

Introduction

000000

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)

Necessity

• Rationality and Common Strong Belief of Rationality

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

- Belief about How Others Play the Game: b_i^1
 - Rationality: Maximize (Conditional) SEU
 - Property of (s_i, b_i^1)
- Belief about Play and b_{-i}^1 : b_i^2

Set-Up

Introduction

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)

Necessity

- Rationality and Common Strong Belief of Rationality
- Belief about How Others Play the Game: b_i^1
 - Rationality: Maximize (Conditional) SEU
 - Property of (s_i, b_i^1)
- Belief about Play and b_{-i}^1 : b_i^2
 - Assign Probability 1 to event "Rational" when Possible

Set-Up

Introduction

Forward Induction Reasoning: Kohlberg, 1981

- Rationalize Past Behavior when Possible
- Formalization: Battigalli and Siniscalchi (2002)

Necessity

- Rationality and Common Strong Belief of Rationality
- Belief about How Others Play the Game: b_i^1
 - Rationality: Maximize (Conditional) SEU
 - Property of (s_i, b_i^1)
- Belief about Play and b_{-i}^1 : b_i^2
 - Assign Probability 1 to event "Rational" when Possible

• And so on.

	~		~		
000000		0000000	000000	0000000	000
Introduction		Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty

Lessons from Finite Games

Lessons from Finite Games

Belief Dependent Concept

Introduction Set-Up Necessity The Nature of Strategic Uncertainty 000000

Lessons from Finite Games

Belief Dependent Concept

Formally:

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000

 Lessons from Finite Games
 000000
 000000
 000
 000
 000

Belief Dependent Concept

Formally:

• Type Structure: Hierarchies of Beliefs about the Play of the Game

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000

 Lessons from Finite Games
 000000
 000000
 000000
 000000
 000000

Belief Dependent Concept

Formally:

• Type Structure: Hierarchies of Beliefs about the Play of the Game

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

• Behavioral Predictions can change with Type Structure

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000

 Lessons from Finite Games
 000000
 000000
 000000
 000000
 000000

Belief Dependent Concept

Formally:

- Type Structure: Hierarchies of Beliefs about the Play of the Game
- Behavioral Predictions can change with Type Structure
- In Particular:
 - "Rich" Type Structure: Extensive-Form Rationalizability

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

- Battigalli and Siniscalchi, 2002
- "Small" Type Structure: Disjoint Prediction

Lessons from Finite Games

Belief Dependent Concept

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000
 000

Lessons from Finite Games

Belief Dependent Concept

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

Lessons from Finite Games

Belief Dependent Concept

Conceptually:

• How Does a Player Update His Hypothesis when Surprised?

The Nature of Strategic Uncertainty Introduction Set-Up 000000 Lessons from Finite Games

Belief Dependent Concept

- How Does a Player Update His Hypothesis when Surprised?
- Tension between Giving up on:
 - (a) Hypothesis that other player is rational vs.
 - (b) Hypothesis about the other player's beliefs

Introduction Set-Up 000000 Lessons from Finite Games

Belief Dependent Concept

- How Does a Player Update His Hypothesis when Surprised?
- Tension between Giving up on:
 - (a) Hypothesis that other player is rational vs.
 - (b) Hypothesis about the other player's beliefs
- Forward Induction Reasoning: Give up on (b)

ssons from Finite Games

Belief Dependent Concept

- How Does a Player Update His Hypothesis when Surprised?
- Tension between Giving up on:
 - (a) Hypothesis that other player is rational vs.
 - (b) Hypothesis about the other player's beliefs
- Forward Induction Reasoning: Give up on (b)
- Small Type Structures:
 - Limit the ability to Give up on (b)
Belief Dependent Concept

Conceptually:

- How Does a Player Update His Hypothesis when Surprised?
- Tension between Giving up on:
 - (a) Hypothesis that other player is rational vs.
 - (b) Hypothesis about the other player's beliefs
- Forward Induction Reasoning: Give up on (b)
- Small Type Structures:
 - Limit the ability to Give up on (b)
- What Small Type Structures are Meant to Capture
 - Restrictions on Players' Beliefs
 - Game Described as Part of a Bigger Context

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000

Sophisticated Reasoning about Strategic Uncertainty

Sophisticated Reasoning about Strategic Uncertainty

A. Restriction on Players' Beliefs

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty
 - Along the Path of Play: Correct Beliefs
 - About Terminal Node

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty
 - Along the Path of Play: Correct Beliefs
 - About Terminal Node
 - If surprised:
 - Must have incorrect beliefs

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty
 - Along the Path of Play: Correct Beliefs
 - About Terminal Node
 - If surprised:
 - Must have incorrect beliefs
 - Connections:
 - Self-Confirming Equilibrium
 - Applications

Sophisticated Reasoning about Strategic Uncertainty

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty
 - Along the Path of Play: Correct Beliefs
 - About Terminal Node
 - If surprised:
 - Must have incorrect beliefs
 - Connections:
 - Self-Confirming Equilibrium
 - Applications

B. Forward Induction Reasoning

Sophisticated Reasoning about Strategic Uncertainty

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty
 - Along the Path of Play: Correct Beliefs
 - About Terminal Node
 - If surprised:
 - Must have incorrect beliefs
 - Connections:
 - Self-Confirming Equilibrium
 - Applications

B. Forward Induction Reasoning

• Co-player satisfies No On Path Strategic Uncertainty

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Sophisticated Reasoning about Strategic Uncertainty

- A. Restriction on Players' Beliefs
 - No On Path Strategic Uncertainty
 - Along the Path of Play: Correct Beliefs
 - About Terminal Node
 - If surprised:
 - Must have incorrect beliefs
 - Connections:
 - Self-Confirming Equilibrium
 - Applications

B. Forward Induction Reasoning

- Co-player satisfies No On Path Strategic Uncertainty
- Limits ability to rationalize co-player's past behavior

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	
Behavioral	Implicat	ions		

◆□▶★@▶★≣▶★≣▶ 美言 のへの

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	cions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

◆□> < □> < □> < □> < □> < □> < □</p>

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

◆□> < □> < □> < □> < □> < □> < □</p>

Necessity

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	cions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Necessity

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Necessity
 - Not an "Anything Goes" Result

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Necessity
 - Not an "Anything Goes" Result
 - With Deadline: Never delay until the last period

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

- Necessity
 - Not an "Anything Goes" Result
 - With Deadline: Never delay until the last period
 - With Deadline: Limits on delay to penultimate period

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Sufficiency

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty		
00000	0000000	000000	0000000	000		
Rehavioral Implications						

benavioral implications

Main Theorem

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

- Necessity
 - Not an "Anything Goes" Result
 - With Deadline: Never delay until the last period
 - With Deadline: Limits on delay to penultimate period

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

- Limits on the negotiated outcomes
- Sufficiency

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

- Necessity
 - Not an "Anything Goes" Result
 - With Deadline: Never delay until the last period
 - With Deadline: Limits on delay to penultimate period

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Limits on the negotiated outcomes
- Ø Sufficiency
 - Can have impasse

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

- Necessity
 - Not an "Anything Goes" Result
 - With Deadline: Never delay until the last period
 - With Deadline: Limits on delay to penultimate period

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Limits on the negotiated outcomes
- Ø Sufficiency
 - Can have impasse
 - Depends on the deadline (if there is any)

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
00000	0000000	000000	0000000	000
Behavioral	Implicat	ions		

Characterize the outcomes consistent with Forward Induction Reasoning under No On Path Strategic Uncertainty.

- Necessity
 - Not an "Anything Goes" Result
 - With Deadline: Never delay until the last period
 - With Deadline: Limits on delay to penultimate period

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Limits on the negotiated outcomes
- ② Sufficiency
 - Can have impasse
 - Depends on the deadline (if there is any)
 - Depends on Bargainers' patience

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	●000000	000000	0000000	
Bargaining	Game:	B		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introduction 000000	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Bargaining	Game:	B		
Timeline				

◆□▶ ◆□▼ ◆目▼ ◆目▼ ◆□▼

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Ba	rgaining	; Game:)	B		
	Timeline				
	0P Barg	ainer 1 Offer	rs: $x \in [0, 1]$		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Ba	rgaining	Game:	B		
	Timeline				
	0P Barga	ainer 1 Offe	rs: $x \in [0, 1]$		
	0R Barga	ainer 2 Choo	oses: A or R		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introd 0000	uction 00	Set-Up • 000000	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertain	y
Ba	rgaining	Game:	B			
	Timeline					
	0P Barga	iner 1 Offe	ers: $x \in [0, 1]$			
	0R Barga	iner 2 Cho	oses: A or R			
	•	lf A				

Introd 0000	uction Set-Up	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty		
Ba	rgaining Game:	B				
	Timeline					
	0P Bargainer 1 Offers: $x \in [0, 1]$					
	0R Bargainer 2 Chooses: A or R					
	• If A: (x, 1	-x, 0)				

Introd 0000	uction Set-Up 00 000000	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty		
Ba	rgaining Game:	B				
	Timeline					
	0P Bargainer 1 Offers: $x \in [0, 1]$					
	0R Bargainer 2 Chooses: A or R					
	 If A: (x,1 - If R 	- x, 0)				

Introd 0000	uction Set-Up	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty		
Ba	rgaining Gam	e: <i>B</i>				
	Timeline					
	0P Bargainer 1	Offers: $x \in [0, 1]$				
	0R Bargainer 2 Chooses: A or R					
	If A: (xIf R	, 1 – <i>x</i> , 0)				
	1P Bargainer 2	Offers: $y \in [0, 1]$				

・ロト・4回ト・4回ト・4回ト・4ロト

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty	
Ba	rgaining	Game:	B			
	Timeline					
	0P Bargainer 1 Offers: $x \in [0, 1]$					
	0R Bargainer 2 Chooses: A or R					
	• •	If A: (<i>x</i> ,1 – If R	- x, 0)			
	1P Barga	ainer 2 Offe	rs: $y \in [0,1]$			
	1R Barga	ainer 1 Choo	oses: A or R			

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④ ● ●

Introd 0000	luction Set-Up	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Ba	rgaining Game:	B		
	Timeline			
	0P Bargainer 1 Offe	rs: $x \in [0, 1]$		
	0R Bargainer 2 Cho	oses: A or R		
	If A: (x,1 -If R	- x, 0)		
	1P Bargainer 2 Offe	rs: $y \in [0, 1]$		
	1R Bargainer 1 Cho	oses: A or R		
	● If A: (1 – y	', y, 1)		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introd 0000	uction S 00	<mark>et-Up</mark> ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty	
Ba	rgaining G	Game: ${\cal B}$				
	Timeline					
	0P Bargainer 1 Offers: $x \in [0, 1]$					
	0R Bargainer 2 Chooses: A or R					
	 If A: (x, 1 − x, 0) If R 					
	1P Bargain	er 2 Offers:	$y \in [0,1]$			
	1R Bargain	er 1 Choos	es: A or R			
	● If ● If	A: (1 – y, y R:	/,1)			

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Set-Up Necessity The Nature of Strategic Uncertainty 000000 Bargaining Game: \mathcal{B} Timeline 0P Bargainer 1 Offers: $x \in [0, 1]$ 0R Bargainer 2 Chooses: A or R • If A: (x, 1 - x, 0)• If R 1P Bargainer 2 Offers: $y \in [0, 1]$ 1R Bargainer 1 Chooses: A or R • If A: (1 - y, y, 1)• If R: (0,0,1), if N=1 is the quitting period

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Set-Up Necessity The Nature of Strategic Uncertainty 000000 Bargaining Game: \mathcal{B} Timeline 0P Bargainer 1 Offers: $x \in [0, 1]$ 0R Bargainer 2 Chooses: A or R • If A: (x, 1 - x, 0)• If R 1P Bargainer 2 Offers: $y \in [0, 1]$ 1R Bargainer 1 Chooses: A or R • If A: (1 - y, y, 1)• If R: (0,0,1), if N=1 is the quitting period Quitting Period: N

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- N Finite: Deadline
- N Infinite: No Deadline

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Ba	rgaining	Game:	B		
	Timeline				
	0P Barga	ainer 1 Offe	rs: $x \in [0, 1]$		
	0R Barga	ainer 2 Cho	oses: A or R		
	9 9	If A: (<i>x</i> ,1 – If R	- x,0)		
	1P Barga	ainer 2 Offe	rs: $y \in [0, 1]$		
	1R Bargainer 1 Chooses: A or R				
	9	If A: (1 – y If R:	r, y, 1)		
	2P				
	• Quitt	ing Period:	N		

- N Finite: Deadline
- N Infinite: No Deadline

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Ba	rgaining	Game:	B		
	Timeline				
0P Bargainer 1 Offers: $x \in [0, 1]$					
	0R Barga	ainer 2 Choo	oses: A or R		
	•	If A: (x ,1 – If R	- x,0)		
	1P Barga	ainer 2 Offe	rs: $y \in [0, 1]$		
	1R Bargainer 1 Chooses: A or R				
	•	If A: (<mark>1 – y</mark> If R:	, y, 1)		
	2P				
	 Quitt 	ing Period:	N		

- N Finite: Deadline
- N Infinite: No Deadline
| Introd
0000 | uction
00 | Set-Up
●○○○○○○ | Necessity
000000 | Sufficiency
0000000 | The Nature of Strategic Uncertainty |
|----------------|---------------------------|---|-----------------------|------------------------|-------------------------------------|
| Ba | rgaining | Game: | B | | |
| | Timeline | | | | |
| | 0P Barga | ainer 1 Offe | rs: $x \in [0, 1]$ | | |
| | 0R Barga | ainer 2 Choo | oses: A or R | | |
| | • | If A: (<i>x</i> , <mark>1</mark> –
If R | - x ,0) | | |
| | 1P Barga | ainer 2 Offe | rs: $y \in [0, 1]$ | | |
| | 1R Barga | ainer 1 Choo | oses: A or R | | |
| | • | If A: (1 – <i>y</i>
If R: | , <mark>y</mark> , 1) | | |
| | 2P | | | | |
| | Quitt | ing Period: | N | | |

- N Finite: Deadline
- N Infinite: No Deadline

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
Ba	rgaining	Game:	B		
	Timeline				
	0P Barga	ainer 1 Offe	rs: $x \in [0, 1]$		
	0R Barga	ainer 2 Choo	oses: A or R		
	•	If A: (<i>x</i> ,1 – If R	- x, 0)		
	1P Barga	ainer 2 Offe	rs: $y \in [0, 1]$		
	1R Bargainer 1 Chooses: A or R				
	•	If A: (1 – <i>y</i> If R:	, y, 1)		
	2P				
	 Quitt 	ing Period:	N		

- N Finite: Deadline
- N Infinite: No Deadline

Introd 0000	uction 00	Set-Up ●○○○○○○	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertai	nty
Ba	rgaining	Game: <i>J</i>	В			
	Timeline					
	0P Barga	iner 1 Offer	s: x ∈ [0, 1]			
	0R Barga	iner 2 Choc	oses: A or R			
	•	lf A: (<i>x</i> ,1 – lf R	x,0)			
	1P Barga	iner 2 Offer	s: $y \in [0, 1]$			
	1R Bargainer 1 Chooses: A or R					
	•	If A: (1 – y If R:	(y, 1)			
	2P					
	• Quitti	ing Period:	N			

・ロト・(量ト・(量ト・(量ト・))

- N Finite: Deadline
- N Infinite: No Deadline
- Payoffs: Share of z in period n gives $\delta^n z$

Modeling Strategic Uncertainty

What we will Need:

What we will Need:

 b_i^1 Bargainer *i*'s beliefs about how other plays

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

inouching offutegie officertui

What we will Need:

- b_i^1 Bargainer *i*'s beliefs about how other plays
- b_i^2 Bargainer *i*'s beliefs about b_{-i}^1 ,

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Modeling Strategic Uncertainty

What we will Need:

- b_i^1 Bargainer *i*'s beliefs about how other plays
- b_i^2 Bargainer *i*'s beliefs about b_{-i}^1 ,
 - etc.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Modeling Strategic Uncertainty

What we will Need:

- b_i^1 Bargainer *i*'s beliefs about how other plays
- b_i^2 Bargainer *i*'s beliefs about b_{-i}^1 ,
 - etc.

What we will Really Need:

Modeling Strategic Uncertainty

What we will Need:

- b_i^1 Bargainer *i*'s beliefs about how other plays
- b_i^2 Bargainer *i*'s beliefs about b_{-i}^1 ,
 - etc.

What we will Really Need:

• Bargainer *i* may begin the game with one hypothesis

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Modeling Strategic Uncertainty

What we will Need:

- b_i^1 Bargainer *i*'s beliefs about how other plays
- b_i^2 Bargainer *i*'s beliefs about b_{-i}^1 ,
 - etc.

What we will Really Need:

• Bargainer *i* may begin the game with one hypothesis

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□▲ ◇◇◇

- May be forced to revise beliefs
 - If other Bargainer plays differently

What we will Need:

- b_i^1 Bargainer *i*'s beliefs about how other plays
- b_i^2 Bargainer *i*'s beliefs about b_{-i}^1 ,
 - etc.

What we will Really Need:

• Bargainer *i* may begin the game with one hypothesis

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□▲ ◇◇◇

- May be forced to revise beliefs
 - If other Bargainer plays differently
- Hierarchies of Conditional Beliefs about the Play

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	000000	000000	0000000	
Type Str	uctures			

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	○O●OOOO	000000	0000000	
Type Str	uctures			

JI

・ロト・4回ト・4日ト・4日・990

For each Player *i*:

1 Type Set: T_i

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	000000	000000	0000000	
Type Str	uctures			

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ingredients of a Type Structure

- **1** Type Set: T_i
- **2** Belief Map: β_i

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	000000	000000	0000000	
Type Str	uctures			

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Ingredients of a Type Structure

- **1** Type Set: T_i
- **2** Belief Map: β_i
 - Map type t_i to belief on $S_{-i} \times T_{-i}$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	000000	000000	0000000	
Type Str	uctures			

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Ingredients of a Type Structure

- **1** Type Set: T_i
- **2** Belief Map: β_i
 - Map type t_i to belief on $S_{-i} \times T_{-i}$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	○○●○○○○	000000	0000000	
Type Str	uctures			

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Ingredients of a Type Structure

- Type Set: T_i
- **2** Belief Map: β_i
 - Map type t_i to belief on $S_{-i} \times T_{-i}$
 - To system of beliefs on $S_{-i} imes T_{-i}$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	000000	000000	0000000	
Type Str	uctures			

For each Player *i*:

- Type Set: T_i
- **2** Belief Map: β_i
 - Map type t_i to belief on $S_{-i} \times T_{-i}$
 - To system of beliefs on $S_{-i} imes T_{-i}$
 - One belief for each information set

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	000000	000000	0000000	
Type Str	uctures			

For each Player *i*:

- **1** Type Set: T_i
- **2** Belief Map: β_i
 - Map type t_i to belief on $S_{-i} \times T_{-i}$
 - To system of beliefs on $S_{-i} imes T_{-i}$
 - One belief for each information set
 - Satisfy rules of conditional probability if possible

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 How to Think of the Objects on the Table

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

How to Think of the Objects on the Table

Description

Epistemic Game: $(\mathcal{B}, \mathcal{T})$

- Bargaining Game
- O Type Structure

How to Think of the Objects on the Table

Description

Epistemic Game: $(\mathcal{B}, \mathcal{T})$

- Bargaining Game
- O Type Structure

Induces Set of States: (s_1, t_1, s_2, t_2)

How to Think of the Objects on the Table

Description Epistemic Game: (B, T) a Bargaining Game a Type Structure Induces Set of States: (s₁, t₁, s₂, t₂)

Epistemic Conditions: Restriction on the Set of States

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

How to Think of the Objects on the Table

Description

- Epistemic Game: $(\mathcal{B}, \mathcal{T})$
 - Bargaining Game
 - O Type Structure
- Induces Set of States: (s_1, t_1, s_2, t_2)

Epistemic Conditions: Restriction on the Set of States

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

No On Path Strategic Uncertainty

How to Think of the Objects on the Table

Description

Epistemic Game: $(\mathcal{B}, \mathcal{T})$

- Bargaining Game
- O Type Structure

Induces Set of States: (s_1, t_1, s_2, t_2)

Epistemic Conditions: Restriction on the Set of States

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- No On Path Strategic Uncertainty
- Porward Induction Reasoning

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	○○○○●○○	000000	0000000	
Forward	Induction	Reasoning		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目■ ���

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	000
	1.	. .		

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Actionality:
 - Property of (*s_i*, *t_i*)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Actionality:
 - Property of (*s_i*, *t_i*)
- Strong Belief: "Thinking"

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Actionality:
 - Property of (*s_i*, *t_i*)
- Strong Belief: "Thinking"
 - Strong Belief is a Property of a Type t_i

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Rationality:
 - Property of (*s_i*, *t_i*)
- Strong Belief: "Thinking"
 - Strong Belief is a Property of a Type t_i
 - Assign probability 1 to E_{-i} , if $E_{-i} \cap [S_{-i}(h) \times T_{-i}] \neq \emptyset$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Actionality:
 - Property of (s_i, t_i)

Rationality and Strong Belief of Rationality

- Strong Belief is a Property of a Type t_i
- Assign probability 1 to E_{-i} , if $E_{-i} \cap [S_{-i}(h) \times T_{-i}] \neq \emptyset$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○
Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Rationality:
 - Property of (s_i, t_i)
 - Set of Rational Strategy-Type Pairs of $i: R_i^1$
- Rationality and Strong Belief of Rationality
 - Strong Belief is a Property of a Type t_i
 - Assign probability 1 to E_{-i} , if $E_{-i} \cap [S_{-i}(h) \times T_{-i}] \neq \emptyset$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Rationality:
 - Property of (s_i, t_i)
 - Set of Rational Strategy-Type Pairs of $i: R_i^1$
- Rationality and Strong Belief of Rationality
 - Strong Belief is a Property of a Type t_i
 - Assign probability 1 to R^1_{-i} , if $R^1_{-i} \cap [S_{-i}(h) \times T_{-i}] \neq \emptyset$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Rationality:
 - Property of (s_i, t_i)
 - Set of Rational Strategy-Type Pairs of $i: R_i^1$
- Rationality and Strong Belief of Rationality
 - Strong Belief is a Property of a Type t_i
 - Assign probability 1 to R^1_{-i} , if $R^1_{-i} \cap [S_{-i}(h) \times T_{-i}] \neq \emptyset$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

- Rationality:
 - Property of (s_i, t_i)
 - Set of Rational Strategy-Type Pairs of $i: R_i^1$
- Rationality and Strong Belief of Rationality
 - Strong Belief is a Property of a Type t_i
 - Assign probability 1 to R^1_{-i} , if $R^1_{-i} \cap [S_{-i}(h) \times T_{-i}] \neq \emptyset$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 No On Path Strategic Uncertainty
 October
 October

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

No On Path Strategic Uncertainty

Say there is **no on path strategic uncertainty at a state** (s_1, t_1, s_2, t_2) if, for each information set along the path of play induced by (s_1, s_2) , t_1 (resp. t_2) assigns probability 1 to reaching the terminal node, viz. z^* , induced by (s_1, s_2) .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000
 000
 000

No On Path Strategic Uncertainty

Say there is **no on path strategic uncertainty at a state** (s_1, t_1, s_2, t_2) if, for each information set along the path of play induced by (s_1, s_2) , t_1 (resp. t_2) assigns probability 1 to reaching the terminal node, viz. z^* , induced by (s_1, s_2) .

Rephrase:

- Event $\mathbb{Z}_{-i}[s_1, s_2]$:
 - Event the terminal node associated with (s_1, s_2) , viz. z^* , is reached, when s_i is played

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

• Each t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	○○○○○○●	000000	0000000	
Epistemio	c Conditio	ns		

◆□▶ ◆□▶ ◆目▼ ◆目▼ ◆□▼

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	○○○○○●	000000	0000000	
Epistemic	Conditio	ns		

NOC 単語 (目を)(目を)(目を)(日)

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 imes R_2^1$

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Epistemic Conditions Conditions Conditions Conditions Conditions

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$
- t_i strongly believes R_{-i}^1

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Epistemic Conditions Conditions Conditions Conditions Conditions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$
- t_i strongly believes R_{-i}^1
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Constrained Conditions Conditions Conditions Conditions

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$ Rationality
- t_i strongly believes R_{-i}^1 Strong Belief of Rationality
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$ No On Path Strategic Uncertainty

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Constrained Conditions Conditions Conditions Conditions

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$ Rationality
- t_i strongly believes R_{-i}^1 Strong Belief of Rationality
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$ No On Path Strategic Uncertainty

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Level 3

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Conditions Epistemic Conditions Conditions Conditions Conditions

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$ Rationality
- t_i strongly believes R_{-i}^1 Strong Belief of Rationality
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$ No On Path Strategic Uncertainty

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Level 3

• Survives Level 2: $(s_1, t_1, s_2, t_2) \in R_1^2 \times R_2^2$

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Constrained Conditions Conditions Conditions Conditions

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2: $R_1^2 \times R_2^2$

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$ Rationality
- t_i strongly believes R_{-i}^1 Strong Belief of Rationality
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$ No On Path Strategic Uncertainty

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Level 3

- Survives Level 2: $(s_1, t_1, s_2, t_2) \in R_1^2 \times R_2^2$
- t_i strongly believes R_{-i}^2

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty Constrained Conditions Conditions Conditions Conditions

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$

Level 2: $R_1^2 \times R_2^2$

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$ Rationality
- t_i strongly believes R_{-i}^1 Strong Belief of Rationality
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$ No On Path Strategic Uncertainty

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Level 3

- Survives Level 2: $(s_1, t_1, s_2, t_2) \in R_1^2 \times R_2^2$
- t_i strongly believes R_{-i}^2

Level 4 ...

Level 1

• Rationality: $(s_1, t_1, s_2, t_2) \in R_1^1 imes R_2^1$

Level 2: $R_1^2 \times R_2^2$

- Survives Level 1: $(s_1, t_1, s_2, t_2) \in R_1^1 \times R_2^1$ Rationality
- t_i strongly believes R_{-i}^1 Strong Belief of Rationality
- t_i strongly believes $\mathbb{Z}_{-i}[s_1, s_2]$ No On Path Strategic Uncertainty

Level 3

- Survives Level 2: $(s_1, t_1, s_2, t_2) \in R_1^2 \times R_2^2$
- t_i strongly believes R_{-i}^2

Level 4 ...

Forward Induction Reasoning Under No On Path Strategic Uncertainty

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	●00000	0000000	
Bounds on	Delay			

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	•00000	0000000	
Bounds or	n Delay			

・ロト・4日×・4日× 日日・900

Bounds on outcomes will come from two levels of reasoning:

- Rationality
- Strong Belief of Rationality
- No On Path Strategic Uncertainty

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	●00000	0000000	
Bounds on	Delay			

・ロト・4日×・4日× 日日・900

Bounds on outcomes will come from two levels of reasoning:

- Rationality
- Strong Belief of Rationality
- No On Path Strategic Uncertainty

Examples:

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	•00000	0000000	
Bounds on	Delay			

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Bounds on outcomes will come from two levels of reasoning:

- Rationality
- Strong Belief of Rationality
- No On Path Strategic Uncertainty

Examples:

Two Period Example: No Delay

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	•00000	0000000	
Bounds on	Delay			

Bounds on outcomes will come from two levels of reasoning:

- Rationality
- Strong Belief of Rationality
- No On Path Strategic Uncertainty

Examples:

- Two Period Example: No Delay
- **2** Three Period Example: If Delay then $(\delta, 1 \delta, 1)$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	•00000	0000000	
Bounds on	Delay			

Bounds on outcomes will come from two levels of reasoning:

- Rationality
- Strong Belief of Rationality
- No On Path Strategic Uncertainty

Examples:

- Two Period Example: No Delay
- **2** Three Period Example: If Delay then $(\delta, 1 \delta, 1)$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

 $\bullet\,$ Only Happen if δ sufficiently large

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	00000	0000000	
The Two	Period D	eadline		

◆□▶ <@▶ < E▶ < E▶ < E|= <00</p>

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	00000	0000000	
The Two	Period D	eadline		

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	00000	0000000	000
The Two	Devied D	andling		

The Two Period Deadline

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	00000	0000000	000
The Two	Devied D	a a dlina		

The Two Period Deadline

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	00000	0000000	000
The Two	Davia d D	a a al line a		

The Two Period Deadline

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes
- t_2^* Strongly Believes 1 is Rational

The Two Period Deadline

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes
- t_2^* Strongly Believes 1 is Rational
 - When Propose: Continues to believe 1 is Rational

The Two Period Deadline

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes
- t_2^* Strongly Believes 1 is Rational
 - When Propose: Continues to believe 1 is Rational
- (s_2^*, t_2^*) Rational and Strongly Believes Rational:
 - 2 offers to take the full pie and expects 1 to Accept

The Two Period Deadline

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes
- t_2^* Strongly Believes 1 is Rational
 - When Propose: Continues to believe 1 is Rational
- (s_2^*, t_2^*) Rational and Strongly Believes Rational:
 - 2 offers to take the full pie and expects 1 to Accept

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

- No On Path Strategic Uncertainty:
 - t_1^* begins the game believing: (0, 1, 1)

The Two Period Deadline

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes
- t_2^* Strongly Believes 1 is Rational
 - When Propose: Continues to believe 1 is Rational
- (s_2^*, t_2^*) Rational and Strongly Believes Rational:
 - 2 offers to take the full pie and expects 1 to Accept
- No On Path Strategic Uncertainty:
 - t_1^* begins the game believing: (0, 1, 1)
- Strong Belief of Rationality
 - t_1^* begins the game believing: 2 Accepts any $x < 1 \delta$ upfront

The Two Period Deadline

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Along Path: 2 Proposes
- t_2^* Strongly Believes 1 is Rational
 - When Propose: Continues to believe 1 is Rational
- (s_2^*, t_2^*) Rational and Strongly Believes Rational:
 - 2 offers to take the full pie and expects 1 to Accept
- No On Path Strategic Uncertainty:
 - t_1^* begins the game believing: (0, 1, 1)
- Strong Belief of Rationality
 - t_1^* begins the game believing: 2 Accepts any $x < 1 \delta$ upfront
- 1 would strictly prefer to offer some $x < 1 \delta$ split upfront

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty		
000000	0000000	000000	0000000			
Three Period Deadline						

Introduction	Set-Up 0000000	000000	Sufficiency 0000000	The Nature of Strategic Uncertainty		
Three Period Deadline						

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty		
000000	0000000	000000	0000000			
Three Period Deadline						

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$
Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty	
000000	0000000	000000	0000000		
Three Period Deadline					

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty		
000000	0000000	000000	0000000			
Three Period Deadline						

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty		
000000	0000000	000000	0000000			
Three Period Deadline						

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty		
000000	0000000	000000	0000000			
Three Period Deadline						

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational

Introduction Set-Up Necessity Sufficiency OCON The Nature of Strategic Uncertainty OCO

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• So: $1-x^* \ge 1-\delta$ or $\delta \ge x^*$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• So:
$$1 - x^* \ge 1 - \delta$$
 or $\delta \ge x^*$

• When 1 Accepts $1-\delta$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

 Three Period Deadline
 0000000
 0000000
 0000000
 0000000

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• So:
$$1 - x^* \ge 1 - \delta$$
 or $\delta \ge x^*$

- When 1 Accepts 1δ
 - Continues to Believe 2 is Rational

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

 Three Period Deadline
 0000000
 0000000
 0000000
 0000000

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$
 - So: $1-x^* \ge 1-\delta$ or $\delta \ge x^*$
- When 1 Accepts $1-\delta$
 - Continues to Believe 2 is Rational
 - Believes 2 will Accept any third-period Offer z < 1

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 0000000
 0000000
 000
 000

 Three Period Deadline
 Interview
 Interview

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$
 - So: $1-x^* \ge 1-\delta$ or $\delta \ge x^*$
- When 1 Accepts 1δ
 - Continues to Believe 2 is Rational
 - Believes 2 will Accept any third-period Offer z < 1

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• So: $\delta x^* \ge \delta^2 z$ for all z < 1 or $x^* \ge \delta$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 0000000
 0000000
 000
 000

 Three Period Deadline
 Image: Set-Up on the set of the set o

Suppose Delay

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- Look at Path Induced by State $(s_1^*, t_1^*, s_2^*, t_2^*)$
- When 2 Proposes $1 x^*$:
 - Continues to believe $(x^*, 1 x^*, 1)$
 - Continues to Believe 1 is Rational
 - Believes 1 will Accept any Offer $y < 1 \delta$
 - So: $1 x^* \ge 1 \delta$ or $\delta \ge x^*$
- When 1 Accepts 1δ
 - Continues to Believe 2 is Rational
 - Believes 2 will Accept any third-period Offer z < 1

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• So: $\delta x^* \ge \delta^2 z$ for all z < 1 or $x^* \ge \delta$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 Object
 Object

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty 000000 The vector devices Device to d

Three Period Deadline Revisited

Suppose Delay

Introduction 000000		Set-Up 0000000	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
	-			2 C	

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

▲ロト ▲周ト ▲ヨト ▲ヨト 三国 のの()

Three Period Deadline Revisited

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- At 1's initial node: continues to believe outcome

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Three Period Deadline Revisited

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- At 1's initial node: continues to believe outcome
 - Expected payoffs δx^*

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Three Period Deadline Revisited

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- At 1's initial node: continues to believe outcome
 - Expected payoffs δx^*
- At 1's initial node: Continues to Believe 2 is Rational

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Three Period Deadline Revisited

- Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 x^*, 1)$
- At 1's initial node: continues to believe outcome
 - Expected payoffs δx^*
- At 1's initial node: Continues to Believe 2 is Rational
 - Believes 2 will Accept any Offer $y < 1 \delta$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000
 000
 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

• At 1's initial node: continues to believe outcome

- Expected payoffs δx^*
- At 1's initial node: Continues to Believe 2 is Rational
 - Believes 2 will Accept any Offer $y < 1 \delta$

• So:
$$\delta x^* \geq 1 - \delta$$
 or $x^* \geq rac{1-\delta}{\delta}$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

• At 1's initial node: continues to believe outcome

• Expected payoffs δx^*

• At 1's initial node: Continues to Believe 2 is Rational

• Believes 2 will Accept any Offer $y < 1 - \delta$

• So:
$$\delta x^* \geq 1 - \delta$$
 or $x^* \geq rac{1-\delta}{\delta}$

• Upper Bound: δ

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 0000000
 000

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

• At 1's initial node: continues to believe outcome

• Expected payoffs δx^*

• At 1's initial node: Continues to Believe 2 is Rational

• Believes 2 will Accept any Offer $y < 1 - \delta$

• So:
$$\delta x^* \geq 1 - \delta$$
 or $x^* \geq rac{1-\delta}{\delta}$

- Upper Bound: δ
- Lower Bound Bound:

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

• At 1's initial node: continues to believe outcome

• Expected payoffs δx^*

• At 1's initial node: Continues to Believe 2 is Rational

• Believes 2 will Accept any Offer $y < 1 - \delta$

• So:
$$\delta x^* \geq 1 - \delta$$
 or $x^* \geq rac{1-\delta}{\delta}$

- Upper Bound: δ
- Lower Bound Bound:
 - No Incentive to Delay till Deadline: δ

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• No Incentive to Settle Upfront: $\frac{1-\delta}{\delta}$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

• At 1's initial node: continues to believe outcome

• Expected payoffs δx^*

• At 1's initial node: Continues to Believe 2 is Rational

• Believes 2 will Accept any Offer $y < 1 - \delta$

• So:
$$\delta x^* \geq 1 - \delta$$
 or $x^* \geq rac{1-\delta}{\delta}$

- Upper Bound: δ
- Lower Bound Bound:
 - No Incentive to Delay till Deadline: δ

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• No Incentive to Settle Upfront: $\frac{1-\delta}{\delta}$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 0000000
 0000000
 000
 000

Three Period Deadline Revisited

Suppose Delay

• Outcome $(s_1^*, t_1^*, s_2^*, t_2^*)$: $(x^*, 1 - x^*, 1)$

• At 1's initial node: continues to believe outcome

• Expected payoffs δx^*

• At 1's initial node: Continues to Believe 2 is Rational

• Believes 2 will Accept any Offer $y < 1 - \delta$

• So:
$$\delta x^* \geq 1 - \delta$$
 or $x^* \geq rac{1-\delta}{\delta}$

- Upper Bound: δ
- Lower Bound Bound:
 - No Incentive to Delay till Deadline: δ

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

- No Incentive to Settle Upfront: $\frac{1-\delta}{\delta}$
- Delay only if sufficiently patient

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
No Dead	line: Nece	ssity		

シック 単則 《曲》《曲》《■》 ▲目》

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
No Dead	line: Nece	ssity		

シック 単則 《曲》《曲》《■》 ▲目》

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	○○○○●○	0000000	
No Deadli	ne: Nece	ssitv		

Fix some epistemic game (B, T) with no deadline. Suppose that, at $(s_1^*,t_1^*,s_2^*,t_2^*)$

- each player is rational
- each player strongly believes the other player is rational, and
- there is no on path strategic uncertainty.

Then, (s_1^*, s_2^*) induces an outcome $(x^*, 1 - x^*, n^*)$ with $x^* \in [\underline{x}_{n^*}, \overline{x}_{n^*}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	○○○○●○	0000000	
No Deadli	ne: Nece	ssitv		

Fix some epistemic game (B, T) with no deadline. Suppose that, at $(s_1^*,t_1^*,s_2^*,t_2^*)$

- each player is rational
- each player strongly believes the other player is rational, and
- there is no on path strategic uncertainty.

Then, (s_1^*, s_2^*) induces an outcome $(x^*, 1 - x^*, n^*)$ with $x^* \in [\underline{x}_{n^*}, \overline{x}_{n^*}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	○○○○●○	0000000	
No Deadli	ne: Nece	ssitv		

Fix some epistemic game (B, T) with no deadline. Suppose that, at $(s_1^*,t_1^*,s_2^*,t_2^*)$

- each player is rational
- each player strongly believes the other player is rational, and
- there is no on path strategic uncertainty.

Then, (s_1^*, s_2^*) induces an outcome $(x^*, 1 - x^*, n^*)$ with $x^* \in [\underline{x}_{n^*}, \overline{x}_{n^*}]$.

$$\underline{x}_{n^*} = \frac{1-\delta}{\delta^{n^*}} \quad \text{and} \quad \overline{x}_{n^*} = \begin{cases} 1 - \frac{\delta(1-\delta)}{\delta^{n^*}} & \text{if } n^* \ge 1\\ 1 & \text{if } n^* = 0. \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty 000000 The Nature of Strategic Uncertainty 000

Illustration of Possible Outcomes: No Deadline

One Period of Delay: Lower Bound

・ロト < 団ト < 団ト < 団ト < ロト

One Period of Delay: Lower and Upper Bounds

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two Periods of Delay

・ロト < 団ト < 団ト < 団ト < ロト

Three Periods of Delay

・ロト < 団ト < 団ト < 団ト < ロト

Consider the Bargaining Game \mathcal{B} with no deadlines. For each finite time period n^{*} and each $x^* \in [\underline{x}_{n^*}, \overline{x}_{n^*}]$, there exists some $(\mathcal{B}, \mathcal{T})$ and a state $(s_1^*, t_1^*, s_2^*, t_2^*)$ thereof, so that

there is forward induction reasoning under no on path strategic uncertainty at (s₁^{*}, t₁^{*}, s₂^{*}, t₂^{*}); and

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

2 (s_1^*, s_2^*) induces the outcome $(x^*, 1 - x^*, n^*)$.

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	OOOOOO	
A Mecha	nism for D	Delay		
Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
--------------	------------	-----------	-------------	-------------------------------------
000000	0000000	000000	OOOOOO	
A Mecha	nism for E	Delay		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	000000	
A Mecha	nism for E	Delay		

• Each Bargainer thinks will agree on a $(x^* : 1 - x^*)$ split in n^*

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	000000	
A Mecha	nism for E	Delay		

- Each Bargainer thinks will agree on a $(x^* : 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction 000000	Set-Up 0000000	Necessity 000000	Sufficiency	The Nature of Strategic Uncertainty
A Mecha	nism for E	Delay		

- Each Bargainer thinks will agree on a $(x^*: 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

• There is no "better offer" to be made earlier

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	000000	
A Mechar	nism for D	Delav		

- Each Bargainer thinks will agree on a $(x^*: 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*
- There is no "better offer" to be made earlier
- Uncertainty about how other Bargainer will react to the unexpected

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction 000000	Set-Up 0000000	Necessity 000000	Sufficiency	The Nature of Strategic Uncertainty
A Mecha	nism for E	Delay		

- Each Bargainer thinks will agree on a $(x^*: 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*
- There is no "better offer" to be made earlier
- Uncertainty about how other Bargainer will react to the unexpected

• Other Bargainer will become more optimistic about future prospects

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

• Make higher demands

Introduction 000000	Set-Up 0000000	Necessity 000000	Sufficiency	The Nature of Strategic Uncertainty
A Mecha	nism for E	Delay		

- Each Bargainer thinks will agree on a $(x^*: 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*
- There is no "better offer" to be made earlier
- Uncertainty about how other Bargainer will react to the unexpected

- Other Bargainer will become more optimistic about future prospects
- Make higher demands

Mechanism Consistent with Forward Induction Reasoning?

Introduction 000000	Set-Up 0000000	Necessity 000000	Sufficiency	The Nature of Strategic Uncertainty
A Mechar	nism for E	Delay		

- Each Bargainer thinks will agree on a $(x^*: 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*
- There is no "better offer" to be made earlier
- Uncertainty about how other Bargainer will react to the unexpected
 - Other Bargainer will, by necessity, hypothesize that I am irrational
 - Other Bargainer will become more optimistic about future prospects
 - Make higher demands

Mechanism Consistent with Forward Induction Reasoning?

Introduction 000000	Set-Up 0000000	Necessity 000000	Sufficiency	The Nature of Strategic Uncertainty
A Mechar	nism for E	Delay		

- Each Bargainer thinks will agree on a $(x^*: 1 x^*)$ split in n^*
 - Each Bargainer thinks other Bargain thinks will agree on a $(x^*: 1 x^*)$ split in n^*
- There is no "better offer" to be made earlier
- Uncertainty about how other Bargainer will react to the unexpected
 - Other Bargainer will, by necessity, hypothesize that I am irrational ??
 - Other Bargainer will become more optimistic about future prospects
 - Make higher demands

Mechanism Consistent with Forward Induction Reasoning?

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

An Illustration: Three Period Deadline

An Illustration: Three Period Deadline

Can Construct a Type Structure

<ロト < 目 > < 目 > < 目 > < 目 > のへの

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: $(s_1^*, t_1^*, s_2^*, t_2^*)$
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: $(s_1^*, t_1^*, s_2^*, t_2^*)$
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

• Proposer: Offer to take the Full Pie

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: (δ, 1 − δ, 1)

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

Strategy s₂^{*}:

• Initial Offer (x, 1 - x, 0): A if and only if $1 - x \ge \delta$.

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: $(s_1^*, t_1^*, s_2^*, t_2^*)$
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)

An Illustration: Three Period Deadline

Can Construct a Type Structure

- State: ($s_1^*, t_1^*, s_2^*, t_2^*$)
- FI Reasoning under No On Path Strategic Uncertainty
- Outcome: $(\delta, 1 \delta, 1)$

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

• At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④000

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Belief of t_2^* :

• If 1 Initially Offered (1,0,0): Probability 1 to (s_1^*,t_1^*)

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- If 1 Initially Offered (1,0,0): Probability 1 to (s_1^*,t_1^*)
- Otherwise: Probability 1 to

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

- If 1 Initially Offered (1,0,0): Probability 1 to (s_1^*,t_1^*)
- Otherwise: Probability 1 to
 - 1 Accepts an Offer of (0, 1, 1)

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

A First (and Futile) Attempt

Type Sets: $\{t_1^*\}$ and $\{t_2^*\}$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

- If 1 Initially Offered (1,0,0): Probability 1 to (s_1^*,t_1^*)
- Otherwise: Probability 1 to
 - 1 Accepts an Offer of (0, 1, 1)
 - 1 Proposes (0,1) in the final period

A First (and Futile) Attempt: Rationality

· · · ·

Strategy s₂^{*}:

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A

Belief of t_2^* :

• If 1 initially Offers (1,0,0): Probability 1 to (s_1^*, t_2^*)

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

- Otherwise: Probability 1 to
 - 1 Accepts an Offer of (0, 1, 1)
 - 1 Proposes (0,1) in the final period

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

A First (and Futile) Attempt: Rationality

Strategy s₂^{*}:

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta,1-\delta,1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A

Belief of t_2^* :

- If 1 initially Offers (1,0,0): Probability 1 to (s_1^*,t_2^*)
- Otherwise: Probability 1 to
 - 1 Accepts an Offer of (0, 1, 1)
 - 1 Proposes (0,1) in the final period

Rational Strategy Type Pair: (s_2^*, t_2^*)

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 A First (and Futile)
 Attempt:
 Rationality

- ◆ □ ▶ → @ ▶ → 图 ▶ → 王 ■ ● 9 < @

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

Rational Strategy Type Pair:

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

Rational Strategy Type Pair:

•
$$(s_1^*, t_1^*)$$
A First (and Futile) Attempt: Rationality

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Rational Strategy Type Pair:

- (s_1^*, t_1^*)
- But second rational strategy-type pair

A First (and Futile) Attempt: Rationality

Strategy s₁^{*}:

- Proposer: Offer to take the Full Pie
- Responder and Offered (1 x, x, 1): A if and only if $1 x \ge \delta$

Belief of t_1^* :

- At Information Set Allowed by s_2^* : Probability 1 to (s_2^*, t_2^*)
- At Information Set *h* Precluded by s_1^* : Probability 1 to $(s_2^{h,*}, t_2^*)$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Rational Strategy Type Pair:

• (s_1^*, t_1^*)

• But second rational strategy-type pair

Implication for 2: Does not Strongly Believe 1 is Rational!

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Strategy s₂^{*}:

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0,1,1)
- Third Period Offer (z, 1 z, 2): A

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0,1,1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

Type t_1^* 's Belief

• Now: Strictly Prefer $(\delta, 1 - \delta, 1)$ over (1, 0, 2)

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0,1,1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

- Now: Strictly Prefer $(\delta, 1 \delta, 1)$ over (1, 0, 2)
- Now t_2^* Does Strongly Believe R_1^1

Set-Up Necessity Sufficiency 0000000

The Problem and Solution

Strategy s^{*}₂:

- Initial Offer (x, 1 x, 0): A if and only if $1 x > \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

- Now: Strictly Prefer $(\delta, 1 \delta, 1)$ over (1, 0, 2)
- Now t_2^* Does Strongly Believe R_1^1
- But: Conditional on Third Period Information Set Being Reached

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty 000000 The Problem and Solution

Strategy s^{*}:

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

- Now: Strictly Prefer $(\delta, 1 \delta, 1)$ over (1, 0, 2)
- Now t_2^* Does Strongly Believe R_1^1
- But: Conditional on Third Period Information Set Being Reached
 - No Best Response for t_2^*

Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty 000000 The Problem and Solution

Strategy s^{*}:

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

- Now: Strictly Prefer $(\delta, 1 \delta, 1)$ over (1, 0, 2)
- Now t_2^* Does Strongly Believe R_1^1
- But: Conditional on Third Period Information Set Being Reached
 - No Best Response for t_2^*
- If Third Period Information Set is Reached:

Introduction Set-Up Necessity Sufficiency occore of Strategic Uncertainty occore of Strategic

The Problem and Solution

Strategy s₂^{*}:

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta,1-\delta,1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1-z, 2): A if 1-z > 0

- Now: Strictly Prefer $(\delta, 1 \delta, 1)$ over (1, 0, 2)
- Now t_2^* Does Strongly Believe R_1^1
- But: Conditional on Third Period Information Set Being Reached
 - No Best Response for t_2^*
- If Third Period Information Set is Reached:
 - Believe 2 Accepts any Offer

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0,1,1)
- Third Period Offer (z, 1 z, 2): A if 1 z > 0

- Now: Strictly Prefer $(\delta, 1 \delta, 1)$ over (1, 0, 2)
- Now t_2^* Does Strongly Believe R_1^1
- But: Conditional on Third Period Information Set Being Reached
 - No Best Response for t_2^*
- If Third Period Information Set is Reached:
 - Believe 2 Accepts any Offer
 - Can Revise Beliefs: 2 Must be Irrational

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0,1,1)
- Third Period Offer (z, 1 z, 2): A

Belief of t_2^* :

• If 1 initially Offers (1, 0, 0): Probability 1 to (s_1^*, t_1^*)

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

- Otherwise: Probability 1 to
 - 1 Accepts an Offer of (0, 1, 1)
 - 1 Proposes (0,1) in the final period

Rational Strategy Type Pair: (s_2^*, t_2^*)

- Initial Offer (x, 1 x, 0): A if and only if $1 x \ge \delta$.
- Proposer:
 - Initially Offered (1,0,0): Offer $(\delta, 1-\delta, 1)$
 - Otherwise: Offer (0, 1, 1)
- Third Period Offer (z, 1 z, 2): A

Belief of t_2^* :

- If 1 initially Offers (1,0,0): Probability 1 to (s_1^*, t_1^*)
- Otherwise: Probability 1 to
 - 1 Accepts an Offer of (0, 1, 1)
 - 1 Proposes (0,1) in the final period

Rational Strategy Type Pair: (s_2^*, t_2^*) and ...

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 Delay and On Path Strategic Uncertainty
 Oncertainty
 Oncertainty
 Oncertainty

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 Delay and On Path Strategic Uncertainty
 Oncertainty
 Oncertainty
 Oncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 Delay and On Path Strategic Uncertainty
 Oncertainty
 Oncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction Set-Up Necessity Sufficiency OCODO Set-Up OC

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

• Perfect Information Games satisfying TDI

Introduction Set-Up Necessity Sufficiency Ocooco Set-Up Ocooco Set-Up Ocooco Set-Up Ocooco Set-Up Ocooco Oc

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

- Perfect Information Games satisfying TDI
- Forward Induction Reasoning Rules out On Path Strategic Uncertainty

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 000000
 000000
 000000
 000000
 000
 000

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

- Perfect Information Games satisfying TDI
- Forward Induction Reasoning Rules out On Path Strategic Uncertainty

Let \mathcal{B} be the Bargaining Game without a deadline. There exists an epistemic game $(\mathcal{B}, \mathcal{T})$ and an outcome consistent with forward induction reasoning, viz. $(x^*, 1 - x^*, n^*)$, so that $x^* < \underline{x}_{n^*}$.

Introduction 000000	Set-Up 0000000	Necessity 000000	Sufficiency 0000000	The Nature of Strategic Uncertainty
The Idea				
Example				

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

• Type Set: $T_i = \{t_i^*\}$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante, t*^{*}₁ assigns probability one to RCSBR for Bargainer 2

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2

• *Ex ante*, assigns probability one to $(x^*, 1 - x^*, 2)$:

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante, t*^{*}₁ assigns probability one to RCSBR for Bargainer 2

• *Ex ante*, assigns probability one to $(x^*, 1 - x^*, 2)$:

•
$$x^* \geq \underline{x}_2$$

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④000

• *Ex ante*, assigns probability one to $(x^*, 1 - x^*, 2)$:

•
$$x^* \geq \underline{x}_2$$

ullet If not, would prefer to offer $1-\delta$ in period 0

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:
 - $x^* \ge \underline{x}_2$ • If not would profer to offer 1
 - $\bullet~$ If not, would prefer to offer $1-\delta$ in period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2
- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:
 - $x^* \ge \underline{x}_2$ • If not, would prefer to offer $1 - \delta$ in period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:
 - Bargainer 2 chooses between $(y^*, 1 y^*, 4)$ and $(x^*, 1 x^*, 2)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2
- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:

•
$$x^* \geq \underline{x}_2$$

- $\bullet~$ If not, would prefer to offer 1 $-~\delta$ in period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:
 - Bargainer 2 chooses between $(y^*, 1 y^*, 4)$ and $(x^*, 1 x^*, 2)$

Bargainer 2 indifferent between these outcomes

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2
- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:
 - $x^* \ge \underline{x}_2$ • If not, would prefer to offer $1 - \delta$ in period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:
 - Bargainer 2 chooses between $(y^*, 1 y^*, 4)$ and $(x^*, 1 x^*, 2)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

• Bargainer 2 indifferent between these outcomes

Nature of On Path Strategic Uncertainty:

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2
- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:

•
$$x^* \geq \underline{x}_2$$

- $\bullet~$ If not, would prefer to offer $1-\delta~{\rm in}$ period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:
 - Bargainer 2 chooses between $(y^*, 1 y^*, 4)$ and $(x^*, 1 x^*, 2)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Bargainer 2 indifferent between these outcomes

Nature of On Path Strategic Uncertainty:

• Incorrect Beliefs about how Bargainer 2 Resolves Indifferences

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2
- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:

•
$$x^* \geq \underline{x}_2$$

- ullet If not, would prefer to offer $1-\delta$ in period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:
 - Bargainer 2 chooses between $(y^*, 1 y^*, 4)$ and $(x^*, 1 x^*, 2)$
 - Bargainer 2 indifferent between these outcomes

Nature of On Path Strategic Uncertainty:

- Incorrect Beliefs about how Bargainer 2 Resolves Indifferences
- Bargainer 1 not Indifferent

Introduction	Set-Up	Necessity	Sufficiency	The Nature of Strategic Uncertainty
000000	0000000	000000	0000000	
The Idea				

- Type Set: $T_i = \{t_i^*\}$
- *Ex Ante,* t_1^* assigns probability one to RCSBR for Bargainer 2
- *Ex ante*, assigns probability one to $(x^*, 1 x^*, 2)$:

•
$$x^* \geq \underline{x}_2$$

- $\bullet~$ If not, would prefer to offer 1 $-~\delta$ in period 0
- If $(y^*, 1 y^*, 4)$ is RCSBR outcome with $x^* < \underline{x}_4$:
 - Bargainer 2 chooses between $(y^*, 1 y^*, 4)$ and $(x^*, 1 x^*, 2)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Bargainer 2 indifferent between these outcomes

Nature of On Path Strategic Uncertainty:

- Incorrect Beliefs about how Bargainer 2 Resolves Indifferences
- Bargainer 1 not Indifferent
- Failure of TDI

 Introduction
 Set-Up
 Necessity
 Sufficiency
 The Nature of Strategic Uncertainty

 Predictions of On-Path Strategic Uncertainty and Delay

· < □ > < @ > < E > < E > E = 900

Causes of On-Path Strategic Uncertainty:

Predictions of On-Path Strategic Uncertainty and Delay

Causes of On-Path Strategic Uncertainty:

Uncertainty about "how a given type plays"

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙

Output in the second second

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences
- Output about first-order beliefs

Proposition

Fix some $(\mathcal{B}, \mathcal{T})$ so that there are a finite number of terminal nodes consistent with forward induction reasoning. Then, there must be states $(s_i, t_i, s_{-i}, t_{-i})$ and $(r_i, t_i, s_{-i}, t_{-i})$

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences
- Output about first-order beliefs

Proposition

Fix some $(\mathcal{B}, \mathcal{T})$ so that there are a finite number of terminal nodes consistent with forward induction reasoning. Then, there must be states $(s_i, t_i, s_{-i}, t_{-i})$ and $(r_i, t_i, s_{-i}, t_{-i})$

 $(s_i, t_i, s_{-i}, t_{-i})$ and $(r_i, t_i, s_{-i}, t_{-i})$ are consistent with forward induction reasoning,

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences
- Output about first-order beliefs

Proposition

Fix some $(\mathcal{B}, \mathcal{T})$ so that there are a finite number of terminal nodes consistent with forward induction reasoning. Then, there must be states $(s_i, t_i, s_{-i}, t_{-i})$ and $(r_i, t_i, s_{-i}, t_{-i})$

- (s_i, t_i, s_{-i}, t_{-i}) and (r_i, t_i, s_{-i}, t_{-i}) are consistent with forward induction reasoning,
- 2 (s_i, s_{-i}) and (r_i, s_{-i}) induce distinct terminal nodes, z and z',

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences
- Output about first-order beliefs

Proposition

Fix some $(\mathcal{B}, \mathcal{T})$ so that there are a finite number of terminal nodes consistent with forward induction reasoning. Then, there must be states $(s_i, t_i, s_{-i}, t_{-i})$ and $(r_i, t_i, s_{-i}, t_{-i})$

- (s_i, t_i, s_{-i}, t_{-i}) and (r_i, t_i, s_{-i}, t_{-i}) are consistent with forward induction reasoning,
- 2 (s_i, s_{-i}) and (r_i, s_{-i}) induce distinct terminal nodes, z and z',
- **③** Bargainer i moves at the last common predecessor of z, z', and

na n

Causes of On-Path Strategic Uncertainty:

- Uncertainty about "how a given type plays"
 - Under Rationality: Uncertainty about how resolve indifferences
- Output about first-order beliefs

Proposition

Fix some $(\mathcal{B}, \mathcal{T})$ so that there are a finite number of terminal nodes consistent with forward induction reasoning. Then, there must be states $(s_i, t_i, s_{-i}, t_{-i})$ and $(r_i, t_i, s_{-i}, t_{-i})$

- (s_i, t_i, s_{-i}, t_{-i}) and (r_i, t_i, s_{-i}, t_{-i}) are consistent with forward induction reasoning,
- 2 (s_i, s_{-i}) and (r_i, s_{-i}) induce distinct terminal nodes, z and z',
- **S** Bargainer i moves at the last common predecessor of z, z', and
- Bargainer i is the only player indifferent between z and z'.

- Battigalli, P. and A. Friedenberg. 2012. "Forward Induction Reasoning Revisited." *Theoretical Economics* 7:57–98.
- Battigalli, P. and M. Siniscalchi. 2002. "Strong Belief and Forward Induction Reasoning." *Journal of Economic Theory* 106(2):356–391.
- Kohlberg, E. 1981. "Some Problems with the Concept of Perfect Equilibrium." *Rapp. Rep. NBER Conf. Theory Gen. Econ. Equilibr. K. Dunz N. Singh, Univ. Calif. Berkeley*.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 のの⊙