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Co-player satisfies No On Path Strategic Uncertainty

Limits ability to rationalize co-player’s past behavior
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Not an “Anything Goes” Result
With Deadline: Never delay until the last period
With Deadline: Limits on delay to penultimate period
Limits on the negotiated outcomes

2 Sufficiency

Can have impasse
Depends on the deadline (if there is any)
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1R Bargainer 1 Chooses: A or R

If A: (1− y , y , 1)
If R:
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Quitting Period: N

N Finite: Deadline
N Infinite: No Deadline

Payoffs: Share of z in period n gives δnz
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Modeling Strategic Uncertainty

What we will Need:

b1
i Bargainer i ’s beliefs about how other plays

b2
i Bargainer i ’s beliefs about b1

−i ,

etc.

What we will Really Need:

Bargainer i may begin the game with one hypothesis

May be forced to revise beliefs

If other Bargainer plays differently

Hierarchies of Conditional Beliefs about the Play
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Type Structures

Ingredients of a Type Structure

For each Player i :

1 Type Set: Ti

2 Belief Map: βi

Map type ti to belief on S−i × T−i
To system of beliefs on S−i × T−i

One belief for each information set
Satisfy rules of conditional probability if possible
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How to Think of the Objects on the Table

Description

Epistemic Game: (B, T )

1 Bargaining Game

2 Type Structure

Induces Set of States: (s1, t1, s2, t2)

Epistemic Conditions: Restriction on the Set of States

1 No On Path Strategic Uncertainty

2 Forward Induction Reasoning
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Forward Induction Reasoning

Forward Induction

Rationalize Past Behavior When Possible

Steps to Formalization:

1 Rationality:

Property of (si , ti )
Set of Rational Strategy-Type Pairs of i : R1

i

2 Strong Belief: “Thinking”

Strong Belief is a Property of a Type ti
Assign probability 1 to E−i , if E−i ∩ [S−i (h)× T−i ] 6= ∅
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No On Path Strategic Uncertainty

Say there is no on path strategic uncertainty at a state (s1, t1, s2, t2) if,
for each information set along the path of play induced by (s1, s2), t1 (resp.
t2) assigns probability 1 to reaching the terminal node, viz. z∗, induced
by (s1, s2).

Rephrase:

Event Z−i [s1, s2]:

Event the terminal node associated with (s1, s2), viz. z∗, is
reached, when si is played

Each ti strongly believes Z−i [s1, s2]
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Epistemic Conditions

Level 1

Rationality: (s1, t1, s2, t2) ∈ R1
1 × R1

2

Level 2

Survives Level 1: (s1, t1, s2, t2) ∈ R1
1 × R1

2

Rationality

ti strongly believes R1
−i

Strong Belief of Rationality

ti strongly believes Z−i [s1, s2]

No On Path Strategic Uncertainty

Level 3

Survives Level 2: (s1, t1, s2, t2) ∈ R2
1 × R2

2

ti strongly believes R2
−i

Level 4 . . .

Forward Induction Reasoning Under No On Path Strategic Uncertainty
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No On Path Strategic Uncertainty

Examples:

1 Two Period Example: No Delay
2 Three Period Example: If Delay then (δ, 1− δ, 1)

Only Happen if δ sufficiently large
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The Two Period Deadline

Suppose Delay

Outcome (s∗1 , t
∗
1 , s
∗
2 , t
∗
2 ): (x∗, 1− x∗, 1)

Along Path: 2 Proposes

t∗2 Strongly Believes 1 is Rational

When Propose: Continues to believe 1 is Rational

(s∗2 , t
∗
2 ) Rational and Strongly Believes Rational:

2 offers to take the full pie and expects 1 to Accept

No On Path Strategic Uncertainty:

t∗1 begins the game believing: (0, 1, 1)

Strong Belief of Rationality

t∗1 begins the game believing: 2 Accepts any x < 1− δ upfront

1 would strictly prefer to offer some x < 1− δ split upfront
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Three Period Deadline

Suppose Delay

Outcome (s∗1 , t
∗
1 , s
∗
2 , t
∗
2 ): (x∗, 1− x∗, 1)

Look at Path Induced by State (s∗1 , t
∗
1 , s
∗
2 , t
∗
2 )

When 2 Proposes 1− x∗:

Continues to believe (x∗, 1− x∗, 1)
Continues to Believe 1 is Rational
Believes 1 will Accept any Offer y < 1− δ
So: 1− x∗ ≥ 1− δ or δ ≥ x∗

When 1 Accepts 1− δ

Continues to Believe 2 is Rational
Believes 2 will Accept any third-period Offer z < 1
So: δx∗ ≥ δ2z for all z < 1 or x∗ ≥ δ
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Suppose Delay

Outcome (s∗1 , t
∗
1 , s
∗
2 , t
∗
2 ): (x∗, 1− x∗, 1)

At 1’s initial node: continues to believe outcome

Expected payoffs δx∗

At 1’s initial node: Continues to Believe 2 is Rational

Believes 2 will Accept any Offer y < 1− δ

So: δx∗ ≥ 1− δ or x∗ ≥ 1−δ
δ

Upper Bound: δ

Lower Bound Bound:

No Incentive to Delay till Deadline: δ
No Incentive to Settle Upfront: 1−δ

δ

Delay only if sufficiently patient
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No Deadline: Necessity

Theorem

Fix some epistemic game (B, T ) with no deadline. Suppose that, at
(s∗1 , t

∗
1 , s
∗
2 , t
∗
2 )

each player is rational

each player strongly believes the other player is rational, and

there is no on path strategic uncertainty.

Then, (s∗1 , s
∗
2 ) induces an outcome (x∗, 1− x∗, n∗) with x∗ ∈ [xn∗ , xn∗ ].

xn∗ = 1−δ
δn∗

and xn∗ =

{
1− δ(1−δ)

δn∗
if n∗ ≥ 1

1 if n∗ = 0.
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Sufficiency: No Deadline

Theorem

Consider the Bargaining Game B with no deadlines. For each finite time
period n∗ and each x∗ ∈ [xn∗ , xn∗ ], there exists some (B, T ) and a state
(s∗1 , t

∗
1 , s
∗
2 , t
∗
2 ) thereof, so that

1 there is forward induction reasoning under no on path strategic
uncertainty at (s∗1 , t

∗
1 , s
∗
2 , t
∗
2 ); and

2 (s∗1 , s
∗
2 ) induces the outcome (x∗, 1− x∗, n∗).
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A Mechanism for Delay

A Mechanism

Each Bargainer thinks will agree on a (x∗ : 1− x∗) split in n∗

Each Bargainer thinks other Bargain thinks will agree on a
(x∗ : 1− x∗) split in n∗

There is no “better offer” to be made earlier

Uncertainty about how other Bargainer will react to the unexpected

Other Bargainer will, by necessity, hypothesize that I am
irrational
Other Bargainer will become more optimistic about future
prospects
Make higher demands
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An Illustration: Three Period Deadline

Can Construct a Type Structure

State: (s∗1 , t
∗
1 , s
∗
2 , t
∗
2 )

FI Reasoning under No On Path Strategic Uncertainty

Outcome: (δ, 1− δ, 1)

Strategy s∗1:

Proposer: Offer to take the Full Pie

Responder and Offered (1− x , x , 1): A if and only if 1− x ≥ δ

Strategy s∗2:

Initial Offer (x , 1− x , 0): A if and only if 1− x ≥ δ.

Proposer:

Initially Offered (1, 0, 0): Offer (δ, 1− δ, 1)
Otherwise: Offer (0, 1, 1)

Third Period Offer (z , 1− z , 2): A
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A First (and Futile) Attempt

Type Sets: {t∗1} and {t∗2}

Belief of t∗1:

At Information Set Allowed by s∗2 : Probability 1 to (s∗2 , t
∗
2 )

At Information Set h Precluded by s∗1 : Probability 1 to (sh,∗2 , t∗2 )

Belief of t∗2:

If 1 Initially Offered (1, 0, 0): Probability 1 to (s∗1 , t
∗
1 )

Otherwise: Probability 1 to

1 Accepts an Offer of (0, 1, 1)
1 Proposes (0, 1) in the final period
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Can Revise Beliefs: 2 Must be Irrational
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Lessons from Finite Games: Battigalli and Friedenberg (2012)

Perfect Information Games satisfying TDI

Forward Induction Reasoning Rules out On Path Strategic
Uncertainty

Let B be the Bargaining Game without a deadline. There exists
an epistemic game (B, T ) and an outcome consistent with forward
induction reasoning, viz. (x∗, 1− x∗, n∗), so that x∗ < xn∗ .



Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

Perfect Information Games satisfying TDI

Forward Induction Reasoning Rules out On Path Strategic
Uncertainty

Let B be the Bargaining Game without a deadline. There exists
an epistemic game (B, T ) and an outcome consistent with forward
induction reasoning, viz. (x∗, 1− x∗, n∗), so that x∗ < xn∗ .



Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

Perfect Information Games satisfying TDI

Forward Induction Reasoning Rules out On Path Strategic
Uncertainty

Let B be the Bargaining Game without a deadline. There exists
an epistemic game (B, T ) and an outcome consistent with forward
induction reasoning, viz. (x∗, 1− x∗, n∗), so that x∗ < xn∗ .



Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

Perfect Information Games satisfying TDI

Forward Induction Reasoning Rules out On Path Strategic
Uncertainty

Let B be the Bargaining Game without a deadline. There exists
an epistemic game (B, T ) and an outcome consistent with forward
induction reasoning, viz. (x∗, 1− x∗, n∗), so that x∗ < xn∗ .



Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

Perfect Information Games satisfying TDI

Forward Induction Reasoning Rules out On Path Strategic
Uncertainty

Let B be the Bargaining Game without a deadline. There exists
an epistemic game (B, T ) and an outcome consistent with forward
induction reasoning, viz. (x∗, 1− x∗, n∗), so that x∗ < xn∗ .



Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

Delay and On Path Strategic Uncertainty

Question

Is the assumption of No on Path Strategic Uncertainty Restrictive?

Lessons from Finite Games: Battigalli and Friedenberg (2012)

Perfect Information Games satisfying TDI

Forward Induction Reasoning Rules out On Path Strategic
Uncertainty

Let B be the Bargaining Game without a deadline. There exists
an epistemic game (B, T ) and an outcome consistent with forward
induction reasoning, viz. (x∗, 1− x∗, n∗), so that x∗ < xn∗ .



Introduction Set-Up Necessity Sufficiency The Nature of Strategic Uncertainty

The Idea

Example

Type Set: Ti = {t∗i }

Ex Ante, t∗1 assigns probability one to RCSBR for Bargainer 2

Ex ante, assigns probability one to (x∗, 1− x∗, 2):

x∗ ≥ x2

If not, would prefer to offer 1− δ in period 0

If (y∗, 1− y∗, 4) is RCSBR outcome with x∗ < x4:

Bargainer 2 chooses between (y∗, 1− y∗, 4) and (x∗, 1− x∗, 2)
Bargainer 2 indifferent between these outcomes

Nature of On Path Strategic Uncertainty:

Incorrect Beliefs about how Bargainer 2 Resolves Indifferences

Bargainer 1 not Indifferent

Failure of TDI
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Predictions of On-Path Strategic Uncertainty and Delay

Causes of On-Path Strategic Uncertainty:

1 Uncertainty about “how a given type plays”

Under Rationality: Uncertainty about how resolve indifferences

2 Uncertainty about first-order beliefs

Proposition

Fix some (B, T ) so that there are a finite number of terminal nodes
consistent with forward induction reasoning. Then, there must be states
(si , ti , s−i , t−i ) and (ri , ti , s−i , t−i )

1 (si , ti , s−i , t−i ) and (ri , ti , s−i , t−i ) are consistent with forward
induction reasoning,

2 (si , s−i ) and (ri , s−i ) induce distinct terminal nodes, z and z ′,

3 Bargainer i moves at the last common predecessor of z , z ′, and

4 Bargainer i is the only player indifferent between z and z ′.
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