Plausibility Orderings in Dynamic Games

Andrés Perea

Maastricht University EpiCenter and Dept. of Quantitative Economics

Maastricht

Amsterdam, December 2012

- In dynamic games, players' **initial beliefs** about the opponents may be **contradicted** during the game.
- Players must be prepared to **revise** their beliefs about the opponents.
- How players revise their beliefs is crucial for how they choose!

Player 2 initially believes

- p: player 1 chooses rationally at stage 1
- q: player 1 chooses rationally at stage 2
- r : player 1 believes that player 2 chooses rationally
 - Upon observing *a*, player 2 must withdraw at least one of these beliefs. Which?

Player 2 initially believes

- p: player 1 chooses rationally at stage 1
- q: player 1 chooses rationally at stage 2
- r : player 1 believes that player 2 chooses rationally
 - **Common strong belief in rationality:** Upon observing *a*, player 2 withdraws belief *r*, but maintains *p* and *q*.
 - Player 2 chooses f.

Player 2 initially believes

- p: player 1 chooses rationally at stage 1
- q: player 1 chooses rationally at stage 2
- r : player 1 believes that player 2 chooses rationally
 - **Common belief in future rationality:** Upon observing *a*, player 2 withdraws belief *p*, but maintains *q* and *r*.
 - Player 2 chooses e.

- In this talk, we analyze "common strong belief in rationality" and "common belief in future rationality" within the framework of **belief** revision theory.
- Can these concepts be modelled by plausibility orderings?

Definition (Epistemic model)

Consider a dynamic game G with two players. An epistemic model for G is a tuple $M = (T_1, T_2, b_1, b_2)$ where

(a) T_i is a set of **types** for player *i*,

(b) b_i assigns to every type $t_i \in T_i$ and every information set $h \in H_i$ some conditional belief $b_i(t_i, h) \in \Delta(S_j(h) \times T_j)$.

M is **complete** if for every conditional belief vector $\beta_i = (\beta_i(h))_{h \in H_i}$ on $S_j \times T_j$ there is some $t_i \in T_i$ with $b_i(t_i) = \beta_i$.

 Here, S_j(h) is set of strategies for player j that reach information set h.

7 / 19

Plausibility Orderings

Definition (Plausibility ordering)

A **plausibility ordering** for player *i* on $S_j \times T_j$ is a reflexive and transitive relation \leq_i on $S_j \times T_j$.

 $(s_j, t_j) \prec_i (s'_j, t'_j)$ means (s_j, t_j) is deemed **more plausible** than (s'_j, t'_j) .

• Corresponds to system of spheres in Grove (1988).

• For a given subset $E \subseteq S_j \times T_j$, define

• Corresponds to **best rationalization principle** (Battigalli (1996)).

9 / 19

A reasoning concept specifies for every dynamic game G and every complete epistemic model M = (T₁, T₂, b₁, b₂) for G, a subset of types ρ_i(M) ⊆ T_i for every player i.

Definition (Characterization by plausibility ordering)

Reasoning concept ρ is **characterized by plausibility ordering** \leq_i on $S_j \times T_j$ if for every information set $h \in H_i$:

$$\bigcup_{i \in \rho_i(M)} \operatorname{supp}(b_i(t_i, h)) = \min_{\preceq_i} (S_j(h) \times T_j).$$

• Consider some **event** $E \subseteq S_j \times T_j$.

Definition (Strong belief)

Type t_i strongly believes in E if at every information set $h \in H_i$:

$$b_i(t_i, h)(E) = 1$$
 whenever $E \cap (S_j(h) \times T_j) \neq \emptyset$.

Common Strong Belief in Rationality

• Strategy s_i is **rational** for type t_i if at every information set $h \in H_i$: $u_i(s_i, b_i(t_i, h)) \ge u_i(s'_i, b_i(t_i, h))$ for all $s'_i \in S_i(h)$.

• For every
$$\tilde{T}_j \subseteq T_j$$
, define

$$(S_j \times \tilde{T}_j)^{rat} := \{(s_j, t_j) \in S_j \times \tilde{T}_j \mid s_j \text{ rational for } t_j\}.$$

Definition (Battigalli and Siniscalchi (2002))

Consider a **complete** epistemic model $M = (T_1, T_2, b_1, b_2)$.

Induction start: $T_i^0 := T_i$. Induction step: $T_i^k = \{t_i \in T_i^{k-1} \mid t_i \text{ strongly believes } (S_j \times T_j^{k-1})^{rat}\}.$ $T_i^\infty := \bigcap_{k \in \mathbb{N}} T_i^k : \text{types that express common strong belief in rationality.}$

Andrés Perea (Maastricht)

12 / 19

Theorem

"Common strong belief in rationality" **can** be characterized by a plausibility ordering.

Proof:

• Define plausibility ordering \leq_i on $S_j \times T_j$ as follows:

 $(s_j, t_j) \prec_i (s'_j, t'_j)$ if and only if $(s_j, t_j) \in (S_j \times T_j^k)^{rat}$ and $(s'_j, t'_j) \notin (S_j \times T_j^k)^{rat}$ for some k.

• Then, at every information set $h \in H_i$:

$$\min_{\leq_i} (S_j(h) \times T_j) = (S_j \times T_j^m)^{rat} \cap (S_j(h) \cap T_j)$$

where *m* is largest *k* for which $(S_j \times T_j^k)^{rat} \cap (S_j(h) \cap T_j) \neq \emptyset$.

• Hence,

$$\min_{\preceq_i}(S_j(h) \times T_j) = \bigcup_{t_i \in T_i^{\infty}} \operatorname{supp}(b_i(t_i, h)).$$

• Belief revision in common strong belief in rationality.

Definition (Belief in Future Rationality)

Type t_i believes in j's future rationality if at every information set $h \in H_i$, the conditional belief $b_i(t_i, h)$ only assigns positive probability to strategy-type pairs (s_j, t_j) where s_j is rational for t_j at every information set $h' \in H_j$ that weakly follows h.

- Corresponds to **stable belief in dynamic rationality** (Baltag, Smets and Zvesper (2009)).
- At $h \in H_i$, player *i* need not believe that *j* has chosen rationally in the past, even when this is possible.

Definition (Common belief in future rationality)

Consider a **complete** epistemic model $M = (T_1, T_2, b_1, b_2)$.

Induction start: $T_i^1 := \{t_i \in T_i \mid t_i \text{ believes in } j \text{ 's future rationality} \}.$

Induction step: $T_i^k = \{t_i \in T_i^{k-1} \mid b_i(t_i, h)(S_j \times T_j^{k-1}) = 1 \text{ at every } h \in H_i\}.$ $T_i^{\infty} := \bigcap_{k \in \mathbb{N}} T_i^k$: types that express common belief in future rationality.

Theorem

Common belief in future rationality **cannot** *be characterized by plausibility ordering.*

- CBFR selects (*a*, *c*) and *b* for player 1.
- Suppose, CBFR is characterized by plausibility ordering.
- Then, ordering must put (*a*, *c*) and *b* in **inner** sphere.
- Hence, at stage 2, player
 2 can only deem (a, c)
 possible.
- This contradicts CBFR!

Theorem (Grove (1988))

A belief revision rule is characterized by a plausibility ordering, if and only, it satisfies the AGM axioms.

- Belief revision in **common strong belief in rationality** is compatible with AGM axioms.
- Belief revision in **common belief in future rationality** must violate some of the AGM axioms!
- Common belief in future rationality violates the **preservation axiom** in AGM theory:

Definition (Preservation axiom)K4If T + p is consistent, then $T * p \vdash T + p$.Andrés Perea (Maastricht)Plausibility OrderingsAmsterdam, December 201218 / 19

Definition (Preservation axiom)

K4 If T + p is consistent, then $T * p \vdash T + p$.

- T = player 1 chooses (a, c) or b
- p = player 1 has chosen a
- T + p is consistent
- T + p = player 1 chooses (a, c)
- But CBFR does not require player 2 at stage 2 to believe (a, c)!

• Preservation axiom reflects forward induction.