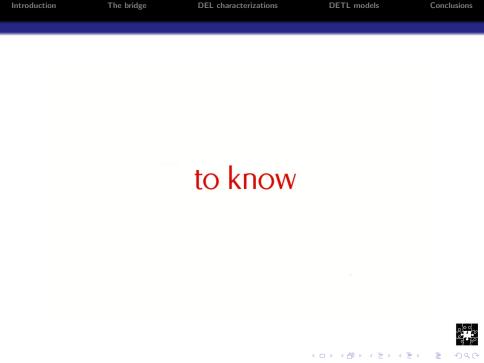
Introduction	The bridge	DEL characterizations	DETL models	Conclusions


CAN DOXASTIC AGENTS LEARN? On the epistemic and temporal structure of learning

Nina Gierasimczuk (with Cédric Dégremont)

Institute for Logic, Language and Computation Universiteit van Amsterdam

> LORI-II October 8th 2009

Introduction	The bridge	DEL characterizations	DETL models	Conclusions

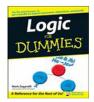
to know

・ロト ・四ト ・ヨト ・ヨト 三日

Introduction	The bridge	DEL characterizations	DETL models	Conclusions

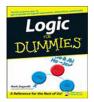
(日) (個) (目) (目) (目) (目)

to know


Introduction	The bridge	DEL characterizations	DETL models	Conclusions

◆□>

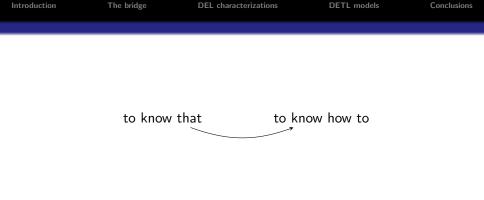
to know



Introduction	The bridge	DEL characterizations	DETL models	Conclusions

to know

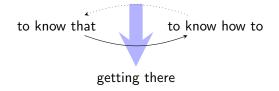
◆□>



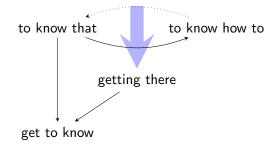
Introduction	The bridge	DEL characterizations	DETL models	Conclusions

to know that

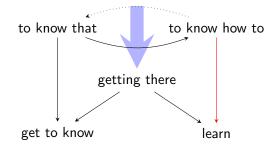
to know how to



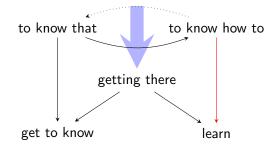
Introduction	The bridge	DEL characterizations	DETL models	Conclusions
	4			
	to know tha	nt to kn	now how to	
	`			



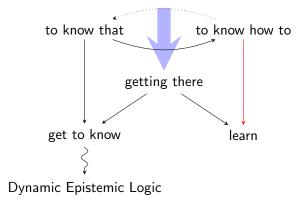
・ロト ・ 一 ト ・ モト ・ モト



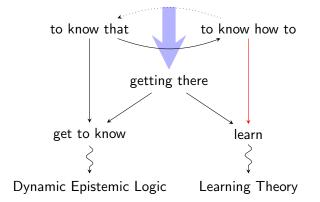
・ロト ・ 一 ト ・ モト ・ モト


Introduction	The bridge	DEL characterizations	DETL models	Conclusions

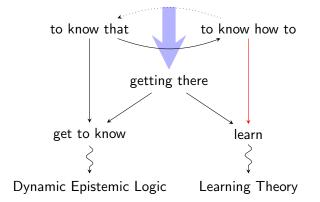
★ロト ★週 ト ★ ヨト ★ ヨト 二 ヨ


Introduction	The bridge	DEL characterizations	DETL models	Conclusions

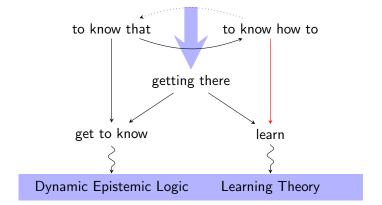
★ロト ★週 ト ★ ヨト ★ ヨト 二 ヨ



・ロト ・ 日 ト ・ モ ト ・ モ ト



・ロト ・聞ト ・ヨト ・ヨト



・ロト ・聞ト ・ヨト ・ヨト

・ロト ・聞ト ・ヨト ・ヨト

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
Outline				

2 The bridge

3 DEL CHARACTERIZATIONS OF LEARNING PROBLEMS

4 DETL models for learnability

5 Conclusions and perspectives

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
Outline				

2 The bridge

3 DEL CHARACTERIZATIONS OF LEARNING PROBLEMS

4 DETL MODELS FOR LEARNABILITY

5 CONCLUSIONS AND PERSPECTIVES

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
The Two				

Formal attempts to grasp the phenomenon of epistemic change:

- formal learning theory (FLT) with scientific discovery,
- belief-revision theory and dynamic epistemic logic (DEL).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Introduction

LEARNING THEORY Identification

- A class of possible worlds.
- One is the actual one (Learner does not know which).
- Oata about the world are generated.
- I From this inductively given data Learner draws his conjectures.
- **6** Each time: new info \rightarrow Learner can answer.
- **(** Learner gets to a correct hypothesis.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

SUCCESS CONDITION AS A PARAMETER

- Identification in the limit.
- Pinite identification.
- 3 Learning by erasing.

æ

IDENTIFICATION IN THE LIMIT

DEFINITION

We say that a learning function $L : \mathbb{N}^* \to \mathbb{N}$:

- identifies S_i ∈ C in the limit on ε iff for co-finitely many m, L(ε|m) = i;
- identifies S_i ∈ C in the limit iff identifies S_i in the limit on every ε for S_i;
- 3 identifies C in the limit iff identifies in the limit every $S_i \in C$.

FINITE IDENTIFICATION

DEFINITION

We say that a learning function L:

- General finitely identifies S_i ∈ C on ε iff, when successively fed ε, at some point L outputs i, and stops;
- initely identifies S_i ∈ C iff it finitely identifies S_i on every ε for S_i;
- **3** finitely identifies C iff it finitely identifies every $S_i \in C$.

LEARNING BY ERASING

DEFINITION (FUNCTION STABILIZATION)

Learning function stabilizes to *i* on environment ε iff for co-finitely many $n \in \mathbb{N}$:

$$i = min\{\mathbb{N} - \{L(\varepsilon|0), \ldots, L(\varepsilon|n)\}\}.$$

Definition

We say that a learning function L:

- learns $S_i \in C$ by erasing on ε iff L stabilizes to i on ε ;
- earns S_i ∈ C by erasing iff it learns by erasing S from every ε for S_i;
- **3** learns *C* by erasing iff it learns by erasing every $S_i \in C$.

	ridge	DEL characterizations	DETL models	Conclusions
Outline				

3 DEL CHARACTERIZATIONS OF LEARNING PROBLEMS

4 DETL MODELS FOR LEARNABILITY

5 CONCLUSIONS AND PERSPECTIVES

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
TUF RD	IDCE			

- Initial class of languages = possible worlds;
- Relations mirror Learner's initial uncertainty and preferences;
- A world is assigned a protocol that indicates admissible sequences of events (possible environments of a language);
- Incoming piece is an event that modifies the initial model;
- Update generates a doxastic epistemic temporal forest.

The Bridge — formally

DEFINITION (INITIAL EPISTEMIC MODEL)

 \mathcal{M}_Ω is a triple:

$$\langle W_{\Omega}, \sim_{\Omega}, V_{\Omega} \rangle,$$

where $W_{\Omega} = \Omega$, $\sim_{\Omega} = W_{\Omega} \times W_{\Omega}$, and for each set $S_i \in \Omega$, we take a nominal *i* and we set $V(i) = \{S_i\}$.

DEFINITION (SINGLE EVENT MODEL)

For each piece of data, we have an event model $\mathcal{E} = \langle \{e\}, \sim^{\mathcal{E}}, \operatorname{pre}_{\mathcal{E}} \rangle$ where $\sim^{\mathcal{E}} = \{(e, e)\}$ and $\operatorname{pre}_{\mathcal{E}}(e) = \top$.

Definition (Local protocol of $(\mathcal{M}_{\Omega}, S_i)$)

Given a state $S_i \in W_{\Omega}$, our protocol P_{Ω} should authorize at S_i any ω -sequence that enumerates S_i and nothing more.

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
FOUD W				

- Semantic properties of learning as iterated update.
- Modal characterizations of forests generated by learning.
- Learnability conditions as properties of temporal models.
- DETL counterparts of FLT characterization theorems.

- 日本 - 4 日本 - 4 日本 - 日本

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
Outline				

2 The bridge

3 DEL CHARACTERIZATIONS OF LEARNING PROBLEMS

4 DETL MODELS FOR LEARNABILITY

5 CONCLUSIONS AND PERSPECTIVES

DEL AND LEARNING PROBLEMS

DEFINITION (STABILIZATION OF ITERATED UPDATE)

Iterated epistemic update of model \mathcal{M} with an infinite sequence of events ϵ stabilizes to \mathcal{M}' iff $\exists n \in N \ \forall m \geq n, \ \mathcal{M}^{\epsilon|m} = \mathcal{M}'$.

Theorem

The following are equivalent:

- **1** Ω is finitely identifiable.
- For all S_i ∈ W_Ω and ε ∈ P_Ω(S_i) the generated epistemic model M^ε_Ω stabilizes to M'_Ω = ⟨W'_Ω, ~'_Ω, V_Ω⟩, where W'_Ω = {S_i} and ~'_Ω = {(S_i, S_i)}.
- For all S_i ∈ W_Ω and ε ∈ P_Ω(S_i) the generated epistemic model M^ε_Ω stabilizes to M'_Ω = ⟨W'_Ω, ~'_Ω, V_Ω⟩, where W'_Ω = {S_i} and M'_Ω, S_i ⊨ K i.

・ロット (雪) () () () ()

DEL AND ETL

THEOREM (VAN BENTHEM ET AL. 2009)

An ETL-model \mathcal{H} is isomorphic to the forest generated by the sequential product update of an epistemic model according to some state-dependent DEL-protocol iff it satisfies perfect recall, synchronicity, uniform no miracles and propositional stability.

э

- 日本 - 4 日本 - 4 日本 - 日本

LANGUAGE OF OUR HYBRID DETL

 $\varphi := p \mid i \mid x \mid \ \downarrow x.\varphi \mid \neg \varphi \mid \varphi \lor \varphi \mid K_j \varphi \mid \mathsf{A}\varphi \mid \bigcirc^{-1}\varphi \mid F\varphi \mid P\varphi \mid \forall \varphi$

 $\mathcal{H}, w\epsilon, w\vec{e}, g \Vdash p$ iff $w\vec{e} \in V(p)$ $\mathcal{H}, w\epsilon, w\vec{e}, q \Vdash i$ iff V(i) = w $\mathcal{H}, w\epsilon, w\vec{e}, q \Vdash x$ iff $q(x) = w\vec{e}$ iff $\mathcal{H}, w\epsilon, w\vec{e}, g[x := w\vec{e}] \Vdash \phi$ $\mathcal{H}, w\epsilon, w\vec{e}, g \Vdash \downarrow x.\phi$ iff $\forall v \vec{f} \forall w \epsilon$ with $v \vec{f} \in \mathcal{K}_i[w \vec{e}] \& v \vec{f} \sqsubseteq v \epsilon'$ we have $\mathcal{H}, v \epsilon', v \vec{f} \Vdash \phi$ $\mathcal{H}, w\epsilon, w\vec{e}, q \Vdash K_i \phi$ iff $\forall v \vec{f} \forall w \epsilon$ with $v \vec{f} \in \mathcal{B}_i[w \vec{e}] \& v \vec{f} \sqsubseteq v \epsilon'$ we have $\mathcal{H}, v \epsilon', v \vec{f} \Vdash \phi$ $\mathcal{H}, w\epsilon, w\vec{e}, g \Vdash B_i \phi$ iff $\forall v \vec{f} \; \forall w \epsilon \; \text{ with } v \vec{f} \in H \; \& \; v \vec{f} \sqsubseteq v \epsilon' \; \text{we have } \mathcal{H}, v \epsilon', v \vec{f} \Vdash \phi$ $\mathcal{H}, w\epsilon, w\vec{e}, g \Vdash \mathbf{A}\phi$ $\mathcal{H}, w\epsilon, w\vec{e}, g \Vdash \bigcirc^{-1} \phi$ iff $\exists a \in \Sigma \ \exists \vec{f} \sqsubseteq \epsilon$ such that $\vec{f} \cdot a = \vec{e}$ and $\mathcal{H}, w\epsilon, w\vec{f} \Vdash \phi$ iff $\exists \vec{q} \in \Sigma^* \exists \vec{f} \sqsubseteq \epsilon$ such that $\vec{f} = \vec{e}\vec{q}$ and $\mathcal{H}, w\epsilon, w\vec{f} \Vdash \phi$ $\mathcal{H}, w\epsilon, w\vec{e}, q \Vdash F\phi$ $\mathcal{H}, w\epsilon, w\vec{e}, g \Vdash P\phi$ iff $\exists \vec{q} \in \Sigma^* \exists \vec{f} \sqsubseteq \epsilon$ such that $\vec{f} \vec{q} = \vec{e}$ and $\mathcal{H}, w\epsilon, w\vec{f} \Vdash \phi$ $\mathcal{H}, w\epsilon, w\vec{e}, a \Vdash \forall \phi$ iff $\forall h' \in \mathfrak{P}(w)$ s.t. $\vec{e} \sqsubseteq h$ we have $\mathcal{H}, wh', w\vec{e} \Vdash \phi$

HYBRID DETL CHARACTERIZATIONS OF LEARNING

Theorem

The following are equivalent:

- **1** Ω is finitely identifiable.
- For all s ∈ W_Ω and ε ∈ P_Ω(s) the learner's knowledge about the initial state stabilizes to s on sε in the generated forest For(M_Ω, V_Ω, P_Ω).
- $\bullet \quad \text{For}(\mathcal{M}_{\Omega}, V_{\Omega}, P_{\Omega}) \Vdash \mathtt{A}(\bigcirc^{-1} \bot \to \downarrow x. \forall \mathsf{FKH}(\bigcirc^{-1} \bot \to x)).$

Outline	Introduction	The bridge	DEL characterizations	DETL models	Conclusions
	Outline				

2 The bridge

3 DEL CHARACTERIZATIONS OF LEARNING PROBLEMS

4 DETL models for learnability

5 CONCLUSIONS AND PERSPECTIVES

Introduction

The bridge

DEL characterizations

DETL models

- 日本 - 4 日本 - 4 日本 - 日本

Conclusions

DETL MODELS FOR LEARNABILITY FIN

DEFINITION

An ETL frame $F(\mathcal{H}) = \langle W, \Sigma, H, \sim_L \rangle$ satisfies Finite Identification (FIN) iff for all $s \in W$ and $h = s\epsilon \in P(s)$ Learner's *knowledge* about the initial state stabilizes to *s* on $s\epsilon$.

An ETL frame $F(\mathcal{H})$ satisfies FIN iff $F(\mathcal{H}) \Vdash i \rightarrow \forall FKi$

- 日本 - 4 日本 - 4 日本 - 日本

DETL MODELS FOR LEARNABILITY ERASE

DEFINITION

An ETL frame $F(\mathcal{H}) = \langle W, \Sigma, H, \sim_L \rangle$ satisfies Learning by Erasing wrt \leq_L , (\leq_L -ERASE) iff for all $s \in W$ and $h = s \epsilon \in P(s)$ Learner's *belief* about the initial state stabilizes to s on $s \epsilon$.

An ETL frame $F(\mathcal{H})$ satisfies \leq -ERASE iff $F(\mathcal{H}[\leq]) \Vdash i \rightarrow \forall FGBi$

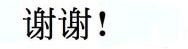
DETL MODELS FOR LEARNABILITY LIM and expressibility problems

An ETL frame F(\mathcal{H}) satisfies ERASE iff $\exists \leq F(\mathcal{H}[\leq]) \Vdash i \rightarrow \forall FGBi$

An ETL frame $F(\mathcal{H})$ satisfies LIM iff $\exists \mathfrak{B}$ -Algorithm $F(\mathcal{H}[\mathfrak{B}]) \Vdash i \rightarrow \forall FGBi$

Introduction	The bridge	DEL characterizations	DETL models	Conclusions
Outline				

- 2 The bridge
- **3** DEL CHARACTERIZATIONS OF LEARNING PROBLEMS
- 4 DETL MODELS FOR LEARNABILITY
- **5** CONCLUSIONS AND PERSPECTIVES



CONCLUSIONS AND PERSPECTIVES

- Semantic grasp of inductive learning in DEL.
- Learnability as a validity problem of DETL.
- Some further directions:
 - **9** Extensions: identification of functions, complete information.
 - ② Effects of various restrictions on protocols.
 - Onstraints on learning functions and on epistemic agents.
 - Operational concept of 'stable belief'.

Introduction	The bridge	DEL characterizations	DETL models	Conclusions

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶