Learning and Teaching as a Game A Sabotage Approach

Nina Gierasimczuk, Lena Kurzen and Fernando R. Velázquez-Quesada

Institute for Logic, Language and Computation Universiteit van Amsterdam

LORI'09, October 8th 2009, Chongqing

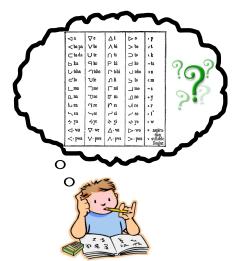
OUTLINE

MOTIVATION

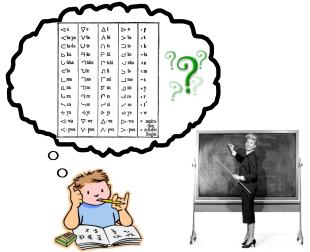
A High-Level Perspective on Learning

Sabotage Games Sabotage Modal Logic

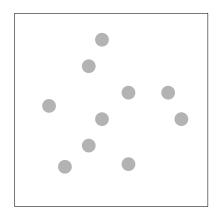
SABOTAGE LEARNING GAMES


Complexity of Sabotage-Type Learning Non-strict alternation

CONCLUSION

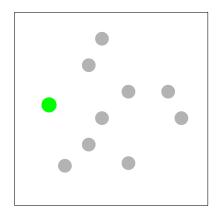

MOTIVATION: LEARNING AND INTERACTION

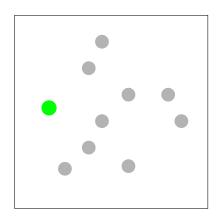
MOTIVATION: LEARNING AND INTERACTION

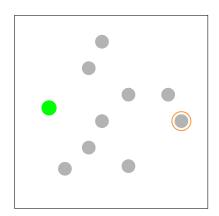

MOTIVATION: LEARNING THEORY

Learning as a convergence to a correct hypothesis; on the basis of inductively given data.

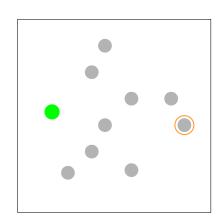
- Language acquisition.
- Scientific inquiry.
- Inductive inference games.



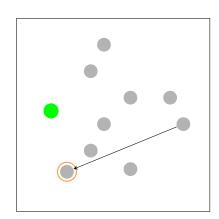




 d_0

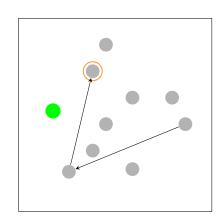


 d_0

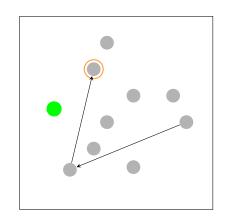


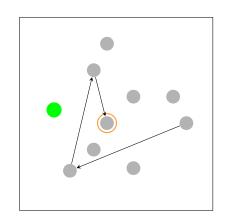
 d_1 d_0

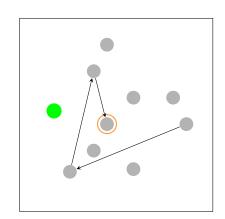
 d_1 d_0

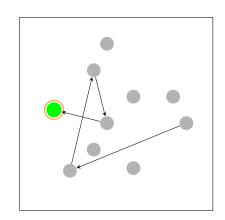

 d_2 d_1 d_0

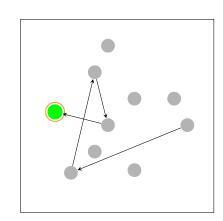
 d_2


 d_0


 d_3 d_2 d_1 d_0


 d_3 d_2 d_1 d_0

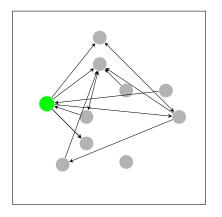

 d_4 d_3 d_2 d_1 d_0


 d_4 d_3 d_2 d_1 d_0

... d₄ d₃ d₂ d₁ d₀

MOTIVATION: FINITE AND LIMITING

The main distinction:


- Finite identification Learner is sure and stops inquiring.
- Identification in the limit Learner keeps inquiring. Success iff co-finitely many answers are correct.

We focus on enforcing the finiteness of learning.

MOTIVATION: BACK TO THE SCENARIO!

A class of hypotheses, with one distinguished goal and Learner generates a map of possible mind changes of Learner.

MOTIVATION: LEARNING AS INTERACTION/GAME

- Learning scenarios as graphs.
- Learning as a game between Teacher(s) and Learner(s) played on a graph.
 - different moves/objectives/information;
 - players' strategies, preferences, cooperation, epistemic status.

Learning can be seen as ...

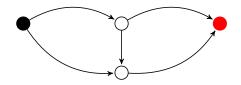
- ▶ A step-by-step process in which Learner changes his state.
- Successful if goal is eventually reached.
- ► Teacher's feedback rules out possible changes of mind.

LEARNING AS A GRAPH-GAME (1)

Learning Model	Our graph
hypotheses	states
correct hypothesis	goal state
possibility of a mind change from hypothesis <i>a</i> to hypothesis <i>b</i>	edge from state a to b

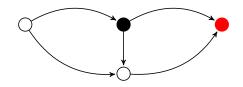
LEARNING AS A GRAPH-GAME (2)

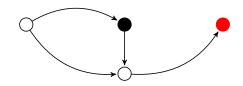
Learning Model

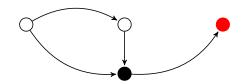

Our Games

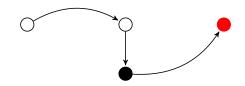
a mind change from hypothesis a transition from state a to b to hypothesis b

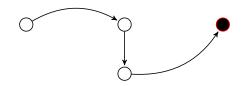
giving a counterexample that removing a transition beeliminates the possibility of a tween a and bmind change from a to b

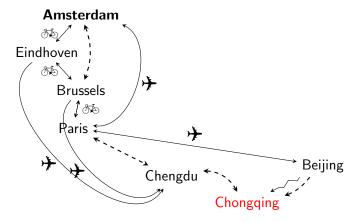






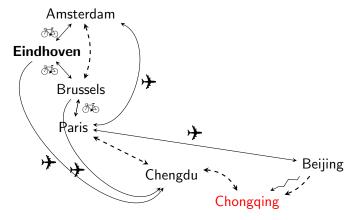


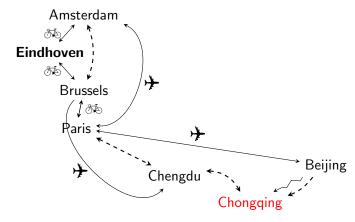


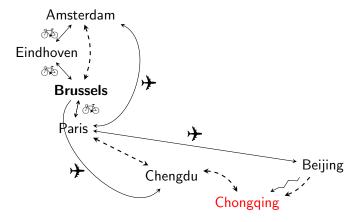


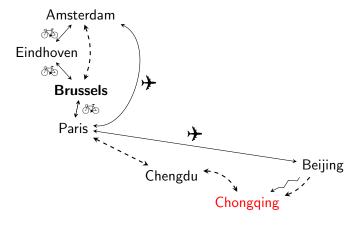
Introducing the Sabotage game

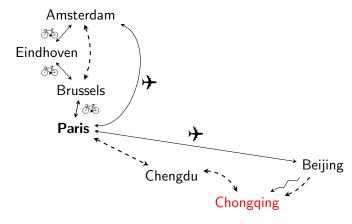
But now, the process looks similar to the one that takes place in *Sabotage Games* . . .

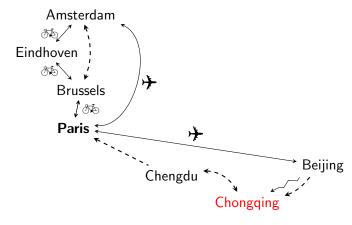


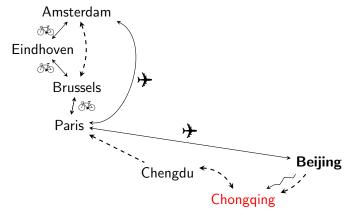


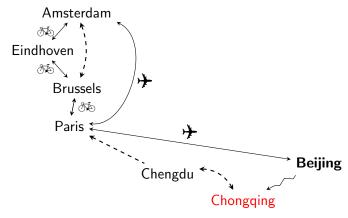


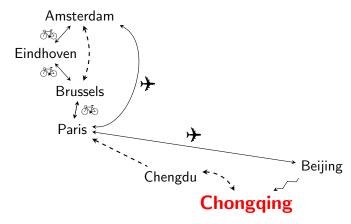












Sabotage Game: Traveling to LORI 2009

SABOTAGE MODAL LOGIC

SABOTAGE MODEL

Take a finite Σ . The model $M = \langle W, (R_{a_i})_{a_i \in \Sigma}, Val \rangle$ is given by

$$W \neq \emptyset$$
, $R_{a_i} \subseteq W \times W$, $Val : PROP \rightarrow \mathcal{P}(W)$

REMOVAL OPERATION

Let $M = \langle W, \{R_a \mid a \in \Sigma\}, Val \rangle$ be a Sabotage Model.

$$\textit{M}_{(v,v')}^{\textit{a}_{\textit{i}}} := \langle \textit{W},\textit{R}_{\textit{a}_{1}},\dots\textit{R}_{\textit{a}_{\textit{i}-1}},\textit{R}_{\textit{a}_{\textit{i}}} \setminus \{(v,v')\},\textit{R}_{\textit{a}_{\textit{i}+1}},\dots\textit{R}_{\textit{a}_{\textit{n}}},\textit{Val}\rangle$$

SABOTAGE MODAL LOGIC

SABOTAGE MODAL LANGUAGE

Language:
$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \diamondsuit_{a} \varphi \mid \diamondsuit_{a} \varphi \quad p \in PROP, \ a \in \Sigma$$

Abbreviations:
$$\Diamond \varphi := \bigvee_{a \in \Sigma} \Diamond_a \varphi$$
 $\Diamond \varphi := \bigvee_{a \in \Sigma} \Diamond_a \varphi$

SEMANTICS

$$M, w \models \Diamond_a \varphi$$
 iff there is $(u, v) \in R_a$ s. t. $M^a_{(u,v)}, w \models \varphi$

THEOREM

Model checking of SML is PSPACE-complete (combined compl.).

SABOTAGE LEARNING GAME

DEFINITION

A Sabotage Learning Game is a Sabotage Game played between Learner and Teacher on a directed multi-graph with an initial vertex and a "goal" vertex.

VARIOUS SCENARIOS

Game	Winning Condition	
SLG_{UE}	Learner wins iff he reaches the goal state,	
unhelpful T., eager L.	Teacher wins otherwise.	
SLG _{HU}	Teacher wins iff Learner reaches the goal state,	
helpful T., unwilling L.	Learner wins otherwise.	
SLG _{HE}	Both players win iff Learner reaches the goal state,	
helpful T. eager L.	Both lose otherwise.	

CHARACTERIZATION RESULTS

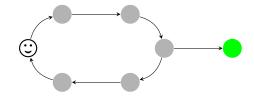
THEOREM

Existence of winning strategy	Winner
$\gamma_0^{\mathit{UE}} := \mathit{goal},$	Learner
$\gamma_{\mathit{n}+1}^{\mathit{UE}} := \mathit{goal} \lor \Diamond \boxminus \gamma_\mathit{n}^{\mathit{UE}}$	
$\gamma_0^{HU}:=\mathit{goal},$	Teacher
$\gamma_{n+1}^{HU} := \mathit{goal} \lor (\lozenge \top \land (\Box \diamondsuit \gamma_n^{HU}))$	
$\gamma_0^{\it HE}:=\it goal,$	Both
$\gamma_{\mathit{n}+1}^{\mathit{HE}} := \mathit{goal} \lor \Diamond \Diamond \gamma_\mathit{n}^{\mathit{HE}}$	
-	$\begin{split} \gamma_0^{UE} &:= goal, \\ \gamma_{n+1}^{UE} &:= goal \lor \Diamond \boxminus \gamma_n^{UE} \\ \gamma_0^{HU} &:= goal, \\ \gamma_{n+1}^{HU} &:= goal \lor (\Diamond \top \land (\Box \Diamond \gamma_n^{HU})) \\ \gamma_0^{HE} &:= goal, \end{split}$

Complexity of Sabotage-Type Learning

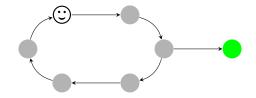
THEOREM

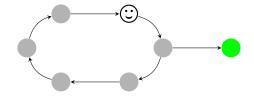
Game	Winning Condition	Complexity
SLG _{UE}	Learner wins iff he reaches the goal state, Teacher wins otherwise	PSPACE- complete
SLG _{HU}	Teacher wins iff Learner reaches the goal state, Learner wins otherwise.	PSPACE- complete
SLG _{HE}	Both players win iff Learner reaches the goal state. Both lose otherwise.	NL- complete

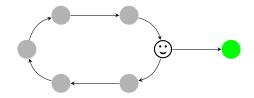


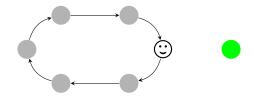
LOCAL VS GLOBAL MOVES

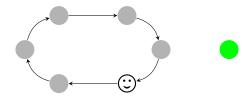
- ▶ Players' moves are of a different nature:
 - Learner moves by local transitions.
 - ▶ Teacher moves by *globally* removing an edge.
- Teacher only needs to act when necessary.

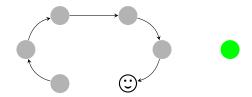


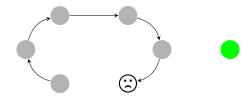












DIFFERENT GAME, SAME SCENARIOS

Game	Winning Condition
SLG_{UE}^{*} unhelpful T., eager L.	Learner wins iff he reaches the goal state, Teacher wins otherwise.
SLG* _{HU}	Teacher wins iff Learner reaches the goal state,
helpful T., unwilling L.	Learner wins otherwise.
SLG^*_{HE}	Both players win iff Learner reaches the goal state,
helpful T. eager L.	Both lose otherwise.

STRICT VS NON-STRICT ALTERNATION

THEOREM

- 1. Learner has a w.s. in SLG_{UE}^* iff he has a w.s. in SLG_{UE} .
- 2. Teacher has a w.s. in SLG_{HII}^* iff she has a w.s. in SLG_{HII} .
- 3. Teacher and Learner have a joint w.s. in SLG_{HE}^* iff they have a joint w.s. in SLG_{HE} .

COROLLARY

► *SLG**: same complexity and characterization results as *SLG*.

SUMMARY & CONCLUSION

AIM

High-level GT perspective on formal learning theory. Strategic abilities, information flow and interaction.

SUMMARY & CONCLUSION

- GT approach to learning that accounts for different levels of cooperativeness between Learner and Teacher.
- Syntactic characterization and complexity of the variations.
- Deciding whether Teacher can force the unwilling Learner to learn is as difficult as deciding whether Learner can learn when Teacher is unhelpful
- ► Teacher's "break" does not change ability to win.

FURTHER WORK

- Other variations on sabotage:
 - local sabotage
 - ▶ adding transitions (→ reactive Kripke structures)
 - sabotage game with imperfect information
- Identification in the limit (stable positions).
 - Epistemic and doxastic interpretation.
 - Fixed-point logics.
- GT approach to learning algorithms.

