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Part I

Setting and Motivation





Chapter 1

Introduction

This book is about change. Change of mind, revision of beliefs, formation of
conjectures, and strategies for learning. We compare two major paradigms of
formal epistemology that deal with the dynamics of informational states: formal
learning theory and dynamic epistemic logic. Formal learning theory gives a com-
putational framework for investigating the process of conjecture change (see, e.g.,
Jain, Osherson, Royer, & Sharma, 1999). With its central notion of identification
in the limit (Gold, 1967), it provides direct implications for the analysis of language
acquisition (see, e.g., Angluin & Smith, 1983) and scientific discovery (see, e.g.,
Kelly, 1996). On the other hand, directions that explicitly involve notions of
knowledge and belief have been developed in the area of philosophical logic. After
Hintikka (1962) established a precise language to discuss epistemic states, the
need of formalizing dynamics of knowledge emerged. The belief-revision AGM
framework (Alchourrón, Gärdenfors, & Makinson, 1985) constitutes an attempt to
talk about the dynamics of epistemic states. Belief-revision policies thus explained
have been successfully modeled in dynamic epistemic logic (see Van Benthem,
2007), which investigates the change in the context of multi-agent systems. Recent
attempts to accommodate iterated knowledge and belief change is where epistemic
logic meets learning theory.

Although the two paradigms are interested in similar and interrelated questions,
the communication between formal learning theory and dynamic epistemic logic
is difficult, mostly because of the differences in their methodologies. Learning
theory is concerned with the global process of convergence in the context of
computability. Belief-revision focuses on single steps of revision and constructive
manners of obtaining new states, and the perspective here is more logic- and
language-oriented.

Learning theory has been formed as an attempt to formalize and understand
the process of language acquisition. In accordance with his nativist theory of
language and his mathematical approach to linguistics, Chomsky (1965) proposed
the existence of what he called a language acquisition device, a module that
humans are born with, an ‘innate facility’ for acquiring language. This turned out

3



4 Chapter 1. Introduction

to be only a step away from the formal definition of language learners as functions,
that on ever larger and larger finite samples of a language keep outputting
conjectures—grammars (supposedly) corresponding to the language in question.
The generalization of this concept in the context of computability theory has taken
the learners to be number-theoretic functions that on finite samples of a recursive
set output indices that encode Turing machines, in an attempt to find an index
of a machine that generates the set. In analogy to a child, who on the basis of
finite samples learns to creatively use a language, by inferring an appropriate set
of rules, learning functions are supposed to stabilize on a value that encodes a
finite set of rules for generating the language.

Learning theory poses computational constraints. Learning functions are most
often identified with computational devices, and this leads to assuming their
recursivity. There are at least three mutually related reasons why learning theory
has been developed in this direction. One comes from cognitive science: Church’s
Thesis in its psychological version; one is practical: the need of implementing
learning algorithms; and finally there is a theoretical one: limiting recursion is
in itself a mathematically interesting subject for logic and theoretical computer
science.

Church’s Thesis says that the human mind can only deal with computable
problems. This statement underlies the very popular view about the analogy
between minds and Turing machines (for an extensive discussion see Szymanik,
2009). This assumption is compatible with investigations into the implementa-
tions of learning procedures as effective algorithms. For similar reasons also the
structures that are being learned are often considered to be computable—indeed,
they are handled by minds which compute, or by algorithms. However restrictive
these computability conditions might seem, learning remains a phenomenon of
high complexity. Identification in the limit (Gold, 1967), the classical definition of
successful learning, requires that the conjectures of learning functions, after some
initial mind-changes, stabilize on the correct hypothesis. This exceeds computable
resources, in fact it is an uncomputable, recursive in the limit, condition: there is
a step k such that for all steps n > k the computable learning function L outputs
the correct hypothesis. Therefore, the question whether a structure is learnable
falls outside the range of computable problems. Classes of sets for which such
learning functions exist, i.e., learnable classes, constitute the domain of limiting
recursion theory, an autonomous topic of research in theoretical computer science.

Summing up, the motivation of language acquisition initially directed learning
considerations towards a recursive framework, with agents represented as certain
type of number-theoretic functions. The discipline has been restricted to the
functions that satisfy the limiting conditions of convergence on certain data
structures. One might say that the domain has been taken over by successful,
ultimately reliable functions (for learning theory in terms of reliability see, e.g.,
Kelly, 1998a). The observation that reliability is the feature that distinguishes
successful learning functions from other possible mind-change policies led to



5

relaxing the recursive paradigm. Learning theory has been re-interpreted as the
framework for analyzing the procedural aspects of science, and became a study of
information flow and general inquiry. This resulted in the treatment of formal
learning theory as the mathematical embodiment of a normative epistemology.1

In philosophy of science and general epistemology there is no need to assume that
theory change is governed by a computable function. Immediately after dropping
the heavy machinery of computability, learning theory linked to the problematics
of knowledge and belief revision (see, e.g., Hendricks, 1995; Jain et al., 1999; Kelly,
1996), with attempts to plug the ready-to-use framework of successful convergence
into the considerations of iterated belief-revision.

On the other side, a logical approach to belief-revision has been proposed in
the so-called AGM framework (Alchourrón et al., 1985), where the beliefs of an
agent are represented as a logically closed set of sentences of a particular language.
A (new) belief-representing sentence gets introduced to the set and causes a belief
change, which often leads to the necessity of removals to keep the beliefs consistent.
AGM theory provides a set of axioms that put some rationality constraints on such
revisions and allow the evaluation of various belief-revision policies. Presently, a
very promising direction of combining the belief-revision framework with modal
logics of knowledge and belief gives us a way to investigate revisions in a more
linguistically-detached way. In this thesis we will look at these problems from a
recently developed perspective of dynamic epistemic logic.

The framework of dynamic epistemic logic comprises a family of logics of
explicit informational actions and corresponding knowledge and belief changes in
agents. The information flow consisting of update actions performed in a stepwise
manner can be defined as transformations of models. Those transformations can be
studied and analyzed explicitly by combining techniques from epistemic, doxastic,
and dynamic logic. Being logics, dynamic epistemic systems come with a semantics,
but also with syntax: a formal language and a proof theory. Interestingly, like
in learning theory, one of the sources is natural language and communication,
but others include epistemology, and theories of agency in computer science (in
particular Baltag, Moss, & Solecki, 1998; Gerbrandy, 1999a, developed basic
update mechanisms that will be used in this thesis). By now many authors see
dynamic epistemic logic as a general theory of social information- and preference-
driven agency, which has led to growing links with temporal logics, game theory,
and other formal theories of interaction (see Van Benthem, 2010). All these more
recent themes will return at places in this dissertation.

This thesis brings learning theory and dynamic epistemic logic together on
two levels. The first link is semantic. We combine local update mechanisms
of dynamic epistemic logic, that constitute constructive step-by-step changes
of current epistemic states, with the long-term temporal modeling offered by

1For the characteristics and history of this line of research see, e.g., the Stanford Encyclopedia
of Philosophy entry Formal Learning Theory by Oliver Schulte.
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learning theory. In terms of benefits of the paradigms, learning theory receives
the fine-structure of well-motivated local learning actions2, and dynamic epistemic
logic gets a long-term ‘horizon’ which it missed (this approach is developed in
Chapters 3 and 4). The second link is syntactic. Dynamic epistemic logic has its
syntax and proof theory, learning theory does not. We show how basic notions
of learning theory can be given simple perspicuous qualitative formulations in
dynamic epistemic languages (the syntactic link is developed in Chapter 5). In
the long run this perspective offers a chance of generic reasoning calculi about
inductive learning.

***

The content of this thesis is organized in three parts. Let us give a brief overview
of the chapters.

In Part I we introduce the setting and the motivation of the thesis. Chapter 2
gives mathematical preliminaries to the basic frameworks of formal learning theory
and logics of knowledge and belief. Chapter 3 is intended to methodologically
compare the two frameworks and provide a conceptual ‘warming up’ for the next
part.

Part II is concerned with generally understood definability notions: expressing
learnability conditions in the language of epistemic and doxastic logic. Chap-
ter 4 gives a dynamic epistemic logic account of iterated belief-revision. By
reinterpreting belief-revision policies as learning methods, we evaluate update,
lexicographic and minimal upgrades with respect to their reliability on different
kinds of incoming information. We are mainly concerned with identifiability
in the limit. In the first part we restrict ourselves to learning from sound and
complete streams of positive data. We show that learning methods based on belief
revision via conditioning (update) and lexicographic revision are universal, i.e.,
provided certain prior conditions, those methods are as powerful as identification
in the limit. We show that in some cases, these priors cannot be modeled using
standard belief-revision models (as based on well-founded preorders), but only
using generalized models (as simple preorders). Furthermore, we draw conclu-
sions about the existence of tension between conservatism and learning power by
showing that the very popular, most ‘conservative’ belief-revision method fails
to be universal. In the second part we turn to the case of learning from both
positive and negative data, and we draw conclusions about iterated belief revision
governed by such streams. This enriched framework allows us to consider the
occurrence of erroneous information. Provided that errors occur finitely often and
are always eventually corrected we show that the lexicographic revision method is
still reliable, but more conservative methods fail.

2One approach to learning theory, learning by erasing (see Section 2.1), uses update-like
actions of hypotheses deletion.



7

In Chapter 5 we are again concerned with learnability properties analyzed in
the context of epistemic and doxastic logic. We study both finite identification and
identification in the limit. We represent the initial uncertainty of the learner as an
epistemic model and characterize the conditions of the emergence of irrevocable
knowledge in epistemic and dynamic epistemic logic. Then, we move to the case
of identifiability in the limit and we give a doxastic logic characterization of the
conditions required for converging to true stable belief. Following recent results
on the correspondence between dynamic epistemic and temporal epistemic logics,
we also give a characterization of learnability in terms of temporal protocols. We
use the fact that the identification of sets can be performed by means of epistemic
update. In the general context of learnability of protocols we characterize finite and
limiting identification in an epistemic temporal and doxastic temporal language.
Our temporal logic based approach to inductive inference gives a straightforward
framework for analyzing various domains of learning on a common ground.

Part III consists of concrete case studies developing the general bridge that we
built further, while also adding new themes. In Chapter 6 we are concerned with
the problem of obtaining and using minimal samples of information that allow
reaching certainty (i.e., allow finite identification). With the notion of eliminative
power of incoming information, we analyze the computational complexity of finding
such minimal samples. The problem of finding minimal-sized samples turns out
to be NP-complete. Moreover, in the general case, we show that if we assume
learners to be recursive, there are situations in which full certainty can be obtained
in a computable way, but it cannot be computably realized by the learner at the
first possible moment, i.e., as soon as the objective ambiguity between possibilities
disappears. We also investigate different types of preset learners, that are tailored
to use the knowledge of such minimal samples in their identification procedure.
Differences in computational complexity between reaching certainty and reaching
it in the optimal way give a motivation for explicitly introducing a new agent, a
teacher, and provide a computational analysis of teachability.

In Chapter 7 we abstract away from the cooperativeness of the learner and the
teacher, the property that is uniformly assumed in learning theory. We investigate
the interaction between them in a particular kind of supervision learning games
based on sabotage games. We are interested in the complexity of teaching, which
we interpret in a similar way as in Chapter 6. Assuming the global perspective of
the teacher, we treat the teachability problem as deciding whether the learning
process can possibly be successful. We interpret learning as a game and hence we
identify learnability and teachability with the existence of winning strategies in
those games. In this context, we analyze different learning and teaching attitudes,
varying the level of the teacher’s helpfulness and the learner’s willingness to learn.
We use sabotage modal logic to reason about these games and, in particular,
we identify formulae of the language that characterize the existence of winning
strategies in each of the scenarios. We provide the complexity results for the
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related model-checking problems. They support the intuition that the cooperation
of agents facilitates learning. Additionally, we observe the asymmetric nature of
the moves of the two players and investigate a version without strict alternation
of moves.

Finally, in Chapter 8 we consider another type of inductive inference that
consists of iterated epistemic reasoning in multi-agent scenarios. We generalize the
Muddy Children puzzle to treat arbitrary quantifiers in Father’s announcement.
Each child in the puzzle is viewed as a scientist who tries to inductively decide a
hypothesis. The interconnection with other scientists can influence the discovery in
a positive way. We characterize the property that makes quantifier announcements
relevant in an epistemic context. In particular, we show what makes them
prone to the occurrence of iteration of epistemic reasoning. The most immediate
contribution to dynamic epistemic logic is a concise, linear representation of the
epistemic situation of the Muddy Children. Moreover, we give a characterization
of the solvability of the Muddy Children puzzle and a uniform way of deciding
how many steps of iterated epistemic reasoning are needed for reaching the
solution. This explicit, step by step analysis brings us closer to investigating the
internal complexity of epistemic problems that the agents are facing and allows a
comparison with computational complexity results from the domain of natural
language quantifier processing.

Chapter 9 concludes the thesis by giving an overview of results and open
questions.

As the reader may have observed from the above overview, the topics of
this dissertation are drawn mainly from the domain of logic and theoretical
computer science, at points reaching out to game theory and cognitive science.
The approach is highly interdisciplinary. Even though the author’s goal was to
make this thesis self-contained, the reader is still assumed to be acquainted with
basics of mathematical logic, computability and complexity theory.
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Chapter 2

Mathematical Prerequisites

This chapter gathers background information on the two major paradigms discussed
and linked in this thesis. First, preliminaries of formal learning theory are given.
Then we discuss the basics of dynamic epistemic logic approaches to information
and belief change. In both cases the existing literature varies in basic notions
and notation. The decisions taken in this chapter should be viewed as defining
the framework and laying the grounds for this thesis, rather than restricting
the paradigms or indicating a general preference. For exhaustive overviews and
references the reader is advised to consult respectively (Jain et al., 1999) and (Van
Ditmarsch, Van der Hoek, & Kooi, 2007).

2.1 Learning Theory

Learning theory is concerned with sequences of outputs of recursive functions,
focusing on those that stabilize on an appropriate value (Gold, 1967; Putnam, 1965;
Solomonoff, 1964a,b). As mentioned in the introduction, the general motivation
here is the possibility of inferring general conclusions from partial, inductively given
information, as in the case of language learning (inferring grammars from sentences)
and scientific inquiry (drawing general conclusions from partial experiments).
These processes can be thought of as games between Scientist (Learner) and
Nature (Teacher). At the start there is a class of possible worlds, or a class
of hypotheses. It is assumed that both Scientist and Nature know what those
possibilities are, i.e., they both have access to the initial class. Nature chooses one
of those possible worlds to be the actual one. Scientist’s aim is to guess which
one it is. He receives information about the world in an inductive manner. The
stream of data is infinite and contains only and all the elements from the chosen
reality. Each time Scientist receives a piece of information he answers with one
of the hypotheses from the initial class. We say that Scientist identifies Nature’s
choice in the limit if after some finite number of guesses his answers stabilize on
a correct hypothesis. Moreover, it is required that the same is true for all the

11



12 Chapter 2. Mathematical Prerequisites

possible worlds from the initial class, i.e., regardless of which element from the
class is chosen by Nature to be true, Scientist can identify it in the limit. In what
follows, the possibilities are taken to be sets of integers, and they will be often
called languages.

Let U ⊆ N be an infinite recursive set; we call any S ⊆ U a language. In
the general case, we will be interested in indexed families of recursive languages,
i.e., classes C for which a computable function f : N × U → {0, 1} exists that
uniformly decides C, i.e.,

f(i, w) =

{
1 if w ∈ Si,
0 if w /∈ Si.

In large parts of this thesis we will also consider C to be {S1, S2, . . . , Sn}, a finite
class of finite sets, in which case we will use IC for the set containing indices of sets
in C, i.e., IC = {1, . . . , n}. We will often refer to the setting in which the possible
realities are taken to be sets using the terms language learning or set learning .

The global input for Scientist is given as an infinite stream of data. In learning
theory, such streams are often called texts (positive presentations).1

Definition 2.1.1. By a text (positive presentation) ε of S we mean an infinite
sequence of elements from S enumerating all and only the elements from S
(allowing repetitions).

Definition 2.1.2. We will use the following notation:

• εn is the n-th element of ε;

• ε�n is the sequence (ε1, ε2, . . . , εn);

• set(ε) is the set of elements that occur in ε;

• Let U∗ be the set of all finite sequences over U . If α, β ∈ U∗, then by α @ β
we mean that α is a proper initial segment of β.

• L is a learning function—a recursive map from finite data sequences to
indices of hypotheses, L : U∗ → N. We will sometimes take the learning
function to be L : U∗ → N ∪ {↑}. Then the function is allowed to refrain
from giving a natural number answer, in which case the output is marked by
↑, but the function remains recursive.2 We sometimes relax the condition of
recursivity of L to discuss some cases of non-effective finite identifiability.

1We will be mainly concerned with sequences of positive information, texts. They are
sometimes also known under the name of environments (see, e.g., Jain et al., 1999). The type
of information that, besides positive, includes also negative information is usually called an
informant.

2The symbol ↑ in the context of learning functions should not be read as a calculation that
does not stop.
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• Let T ⊆ N be a finite set. Then T̂ is the finite sequence such that set(T̂ ) = T
and length(T̂ ) = |T |, where | · | stands for the cardinality of a set, and T̂
enumerates the integers from T in increasing order.

2.1.1 Finite Identification

Finite identifiability of a class of languages from positive data is defined by the
following chain of conditions.

Definition 2.1.3. A learning function L:

1. finitely identifies Si ∈ C on ε iff, when inductively given ε, at some point L
outputs a single value i;

2. finitely identifies Si ∈ C iff it finitely identifies Si on every ε for Si;

3. finitely identifies C iff it finitely identifies every Si ∈ C.

A class C is finitely identifiable iff there is a learning function L that finitely
identifies C.

Example 2.1.4. Let C1 = {Si = {0, i} | i ∈ N− {0}}. C1 is finitely identifiable
by the following function L : U∗ → N ∪ {↑}:

L(ε�n) =

{
↑ if set(ε�n) = {0} or ∃k < n L(ε�k) 6= ↑,
max(set(ε�n)) otherwise.

In other words, L outputs the correct hypothesis as soon as it receives a number
different than 0, and the procedure ends.

To see how restrictive this notion is, we can consider a finite class of languages
that is not finitely identifiable.

Example 2.1.5. Let C2 = {Si = {0, . . . , i} | i ∈ {1, 2, 3}}. C2 is not finitely
identifiable. To see that, assume that S2 = {0, . . . , 2} is chosen to be the actual
world. Then the learning function can never conclusively decide that S2 is the
actual language. For all it knows, 3 might appear in the future, so it has to leave
the S3-possibility open.

A necessary and sufficient condition for finite identifiability has already been
formulated in the literature (Lange & Zeugmann, 1992; Mukouchi, 1992).

Definition 2.1.6 (Mukouchi 1992). A set Di is a definite finite tell-tale set for
Si ∈ C if

1. Di ⊆ Si,
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2. Di is finite, and

3. for any index j, if Di ⊆ Sj then Si = Sj.

On the basis of this notion, finite identifiability can be then characterized in
the following way.

Theorem 2.1.7 (Mukouchi 1992). A class C is finitely identifiable from positive
data iff there is an effective procedure D : N→ P<ω(N), given by n 7→ Dn, that
on input i produces a definite finite tell-tale of Si.

In other words, each set in a finitely identifiable class contains a finite subset
that distinguishes it from all other sets in the class. Moreover, for the effective
identification it is required that there is a recursive procedure that provides such
definite finite tell tale-set.

2.1.2 Identification in the Limit

Let us consider again Example 2.1.5, i.e., take C2 = {Si = {0, . . . , i} | i ∈ {1, 2, 3}},
but now assume that S2 is the actual language. Then Scientist cannot conclusively
decide that it is the case. There is however a way to deal with this kind of
uncertainty. Namely, if we allow Scientist to answer each time he gets a new piece
of data, we can define the success of learning using the notion of convergence to the
right answer. After seeing 0, 1 and 2 Learner can keep conjecturing S2 indefinitely,
because in fact 3 will never appear. This leads to the notion of identification in
the limit.

Definition 2.1.8 (Identification in the limit (Gold, 1967)). Learning function L:

1. identifies Si ∈ C in the limit on ε iff for co-finitely many m, L(ε�m) = i;

2. identifies Si ∈ C in the limit iff it identifies Si in the limit on every ε for Si;

3. identifies C in the limit iff it identifies in the limit every Si ∈ C.

A class C is identifiable in the limit iff there is a learning function that identifies
C in the limit.

Below we give some examples of classes of languages which are identifiable in
the limit. First let us consider an example of a finite class of finite sets.

Example 2.1.9. Recall the class C2 from the previous example. C2 is identifiable
in the limit by the following function L : U∗ → N:

L(ε�n) = max(set(ε�n)).

We can use the same learning function to identify an infinite class of finite
sets.
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Example 2.1.10. Let C3 = {Si | i ∈ N− {0}}, where Sn = {1, . . . , n}.

The property of identification in the limit of the class C3 is lost when we enrich
it with the set of all natural numbers.

Example 2.1.11. Let C4 = {Si | i ∈ N}, where S0 = N and for n ≥ 1, Sn =
{1, . . . , n}. C4 is not identifiable in the limit. To show that this is the case, let us
assume that there is a function L that identifies C4. We will construct a text, ε
on which L fails: ε starts by enumerating N in order: 0, 1, 2, . . ., if arriving at a
number k, L decides it is S0, we start repeating k indefinitely. This means we will
have a text for Sk. As soon as L decides it is Sk we continue with k+ 1, k+ 2, . . .,
so we get a text for S0, etc. This shows that there is a text for a set from C4 on
which L fails.

We have already seen an infinite class of finite sets that is identifiable in the
limit. The next example shows an infinite class of infinite sets that is identifiable
in the limit.

Example 2.1.12. Let C5 = {Sn | Sn = N− {n}, n ∈ N}. C5 is identifiable in the
limit by the learning function L : U∗ → N:

L(ε�n) = min(N− set(ε�n)).

A characterization of classes that are identifiable in the limit can be given in
terms of finite tell-tale sets3 (Angluin, 1980).

Definition 2.1.13 (Angluin 1980). A set Di is a finite tell-tale set for Si ∈ C if

1. Di ⊆ Si,

2. Di is finite, and

3. for any index j, if Di ⊆ Sj then Sj 6⊂ Si.

Identifiability in the limit can be then characterized in the following way.

Theorem 2.1.14 (Angluin 1980). An indexed family of recursive languages C =
{Si | i ∈ N} is identifiable in the limit from positive data iff there is an effective
procedure D, that on input i enumerates all elements of a finite tell-tale set of Si.

In other words, each set in a class that is identifiable in the limit contains a
finite subset that distinguishes it from all its subsets in the class. Moreover, for
the effective identification it is required that there is a recursive procedure that
enumerates such finite tell-tales.

3The notion of definite finite tell-tale set from Definition 2.1.6 in the previous section, is a
modification and strengthening of the presently discussed, original notion of finite-tell tale set.
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2.1.3 Other Paradigms

Learning by Erasing Learning by erasing (Lange, Wiehagen, & Zeugmann,
1996) is an epistemologically intuitive modification of the identification in the
limit. It has not drawn much attention in the field of formal learning theory
but for our purposes (a comparison with the approach of dynamic epistemic
logic) it is interesting. Very often the cognitive process of converging to a correct
conclusion consists of eliminating those possibilities that are falsified during the
inductive inquiry. Accordingly, in the formal model the outputs of the learning
function are negative, i.e., the function each time eliminates a hypothesis, instead
of explicitly guessing one that is supposed to be correct. The difference between
the definition of this approach and the usual identification is in the interpretation
of the conjecture of the learning function. In learning by erasing one assumes
an ordering of the initial hypothesis space isomorphic to the natural numbers.
This allows one to interpret the actual positive guess of the learning-by-erasing
function to be the least hypothesis (in the given ordering) not yet eliminated.

Let us give now the two definitions that shape the notion of learning by erasing.

Definition 2.1.15 (Function stabilization). In learning by erasing we say that a
function stabilizes to number k on environment ε iff for co-finitely many n ∈ N:

k = min({N− {L(ε�1), . . . , L(ε�n)}}).

Definition 2.1.16 (Learning by erasing (Lange et al., 1996)). We say that a
learning function L:

1. learns Si ∈ C by erasing on ε iff L stabilizes to i on ε;

2. learns Si ∈ C by erasing iff it learns Si by erasing from every ε for Si;

3. learns C by erasing iff it learns every Si ∈ C by erasing.

A class C is learnable by erasing iff there is a learning function that learns C by
erasing.

It is easy to observe that in this setting learnability heavily depends on the
chosen enumeration of languages, since the positive conjecture of the learning
function is interpreted as the minimal one that has not yet been eliminated.

Several types of learning by erasing have been proposed. They vary in the
condition of which hypotheses the learning function is allowed to remove (for
details and results on learning by erasing see Lange et al., 1996).

Function learning Let us now mention another paradigm of learning in the
limit—function learning. This falls out of the scope of the language-learning
paradigm, but the notion of identification is in its essence very similar. The success
of learning is again defined in the limit as convergence to a correct hypothesis.
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This time however we take possible realities to be total recursive functions. This
can be made concrete in various ways. For instance, it has been considered as a
way to model program synthesis in the context of learning and empirical inquiry
(see, e.g., Jantke, 1979; Shapiro, 1998); in linguistics, the framework has been used
to model language learning in the context of finding an appropriate assignment of
deep syntactic structures to syntactic representations (for discussion see Wexler &
Cullicover, 1980).

Since we consider a different type of structure here, we have to change the
definition of text.4

Definition 2.1.17. A text of a function, ε, is any infinite sequence over N× N
(any infinite sequence of pairs of numbers), such that for each x ∈ N there is
exactly one y such that (x, y) occurs in the sequence. In other words a text of a
function g is any enumeration of the content of the graph of g.

For text of functions we will use the notation introduced in Definition 2.1.2.
Let us take Cf to be a class of total recursive functions. For each g ∈ Cf we

consider Turing machines ϕn which compute g. We take Ig = {n | ϕn computes g}.
Let us now assume that g ∈ Cf and ε is a text for g. We specify function
identification in the limit by the following definition.

Definition 2.1.18 (Identification in the limit of functions). We say that a learning
function L:

1. identifies a function g ∈ Cf in the limit on ε iff for co-finitely many m,
L(ε�m) = k and k ∈ Ig;

2. identifies g ∈ C in the limit iff it identifies g in the limit on every ε for g;

3. identifies C in the limit iff it identifies every h ∈ C in the limit.

Function learning differs from language learning in many respects. One of
the most important differences lies in the specific properties of possible realities—
functions. Namely, environments of functions carry more information than streams
of data defined for set learning. In an environment for a total function it is enough
to examine a finite fragment of the environment to decide whether a given pair
(n,m) is in the whole sequence. That is so because in some finite fragment we
can find either (n,m) itself or some (n,m′) with m 6= m′. In the latter case it
follows that (n,m) is not in the sequence. In language learning it is impossible to
conclude the non-existence of an element in an environment on the basis of finite
examination. This allows the class of all recursive functions to be identifiable in
the limit (see Jain et al., 1999). Let us also mention that totality of functions
implies that for every n, there is an m, such that (n,m) is an element of an

4Similarly to the case of set learning, we take a text to be a positive presentation of a function.
We are not concerned here with negative information at all.
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environment. Therefore, it makes little difference to the learning if the function
is enumerated in order (g(0), g(1), . . .). In that case learning is equivalent to the
ability to guess the next value of the function after a certain time.

2.2 Logics of Knowledge and Belief

Modal logics of epistemic change are used to analyze the information flow in
multi-agent systems (see, e.g., Baltag et al., 1998; Van Benthem, Van Eijck,
& Kooi, 2006; Gerbrandy, 1999a,b). The approach of dynamic epistemic logic,
DEL for short, (Plaza, 1989, see also Van Ditmarsch et al., 2007 for a handbook
presentation) focuses on formalizing the principles of such epistemic changes.

2.2.1 Epistemic Logic

Let us begin with the notion of epistemic model. In what follows A = {1, . . . , n}
is a finite set of agents and Prop is a countable set of propositional letters.

Definition 2.2.1. An epistemic model M based on a set of agents A is a triple:

(W, (∼i)i∈A, V ),

where W 6= ∅ is a set of states, for each i ∈ A, ∼i is a binary equivalence relation
on W , and V : Prop→ P(W ) is a valuation.

A pair (M, w), where M = (W, (∼i)i∈A, V ) is an epistemic model and w ∈ W ,
will be called a pointed epistemic model.

The information that agent i possesses in state w is denoted by

Ki[w] = {v ∈ W | w ∼i v}.
It stands for all information within the uncertainty range of agent i with respect
to w. Accordingly, the knowledge of agent i in state w consists of those statements
that are true in all worlds he considers possible from state w. To explicitly
talk about knowledge we will use the language of basic epistemic logic (see, e.g.,
Blackburn, Rijke, & Venema, 2001).

Definition 2.2.2 (Syntax of LEL). The syntax of epistemic language LEL is
defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kiϕ

where p ∈ Prop, i ∈ A. We will write > for p ∨ ¬p and ⊥ for ¬>.

Definition 2.2.3 (Semantics of LEL). We interpret LEL in the states of epistemic
models as follows.

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff it is not the case that M, w |= ϕ
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ
M, w |= Kiϕ iff for all v such that w ∼i v we have M, v |= ϕ
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Let us now provide an axiomatic system for epistemic logic EL (see, e.g.,
Blackburn et al., 2001).

PL ` ϕ if ϕ is a substitution instance of a tautology of propositional logic
Nec if ` ϕ, then ` Kiϕ
K ` Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
T ` Kiϕ→ ϕ
4 ` Kiϕ→ KiKiϕ
5 ` ¬Kiϕ→ Ki¬Kiϕ
MP if ` ϕ→ ψ and ` ϕ, then ` ψ

Theorem 2.2.4. The axiomatic system EL is complete with respect to the class
of epistemic models.

Epistemic Update

Epistemic models are static—they represent the informational state of an agent in
temporal isolation. We will now make the setting more dynamic by assuming that
agents observe some incoming data and are allowed to revise their informational
states. We will consider update (see Van Benthem, 2007)—a policy that restricts
models; each time a piece of data is encountered, it is assumed to be truthful and
all worlds of the epistemic model that do not satisfy this new information are
eliminated. The definition below formalizes the notion of update with a formula ϕ.

Definition 2.2.5. The update of an epistemic model M = (W, (∼i)i∈A, V ) with
a formula ϕ, restricts M to those worlds that satisfy ϕ, formally M | ϕ =M′ :=
(W ′, (∼′i)i∈A, V ′),

1. W ′ = {w ∈ W | w |= ϕ};

2. for each i ∈ A, ∼′i = ∼i� W ′;

3. V ′ = V � W ′.

Obviously, the incoming information that triggers update need not be proposi-
tional, not even purely linguistic. It can be any event that itself has an epistemic
structure.5 Below we consider a quite challenging case of an update with epistemic
information.

5To consider changes caused by such arbitrary events, the notion of event model and product
update has been introduced (Baltag et al., 1998). The former represents the epistemic content
of an event, the latter stands for combining an epistemic model with an event model.
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Muddy Children We want to devote some space to the classical logical puzzle
which received a considerable amount of attention in dynamic epistemic logic (see,
e.g., Van Ditmarsch et al., 2007; Gerbrandy, 1999a; Moses, Dolev, & Halpern,
1986). We discuss it here to give a flavor of complicated epistemic reasoning that
can be successfully analyzed within DEL framework. We will return to the puzzle
in the last chapter of this thesis, where we also propose a novel representation of
this problem.

Example 2.2.6 (Muddy Children Puzzle). The children, who were playing outside
for a while, are called back in by their father. Some of them are dirty, in particular
they have mud on their foreheads. The father decides to play with them and says:

(1) At least one of you has mud on your forehead.

And immediately after, he asks:

(I) Can you tell for sure whether or not you have mud on your forehead? If yes,
step forward and announce your status.

Each child can see the mud on others but cannot see his or her own forehead.
Nothing happens. After that the father repeats I. Still nothing. But after he repeats
the question three times suddenly all children know whether or not they have mud
on their forehead. How is that possible?

The framework of dynamic epistemic logic allows a clear and comprehensive
explanation of the underlying phenomena. Let us briefly explain the classical
modeling. Assume there are three children, let us call them a, b and c, and assume
that, in fact, all of them are muddy. We will take three propositional letters
ma, mb and mc that express that the corresponding child is muddy. The initial
epistemic model of the situation is depicted in Figure 2.1.

In the model, possible worlds correspond to the ‘distribution of mud’ on
children’s foreheads, e.g., ma,¬mb,¬mc stands for a being muddy and b and c
being clean. Two worlds are joined with an edge labeled with x, if the two worlds
are in the uncertainty range of agent x (i.e., if agent x cannot distinguish between
the two worlds). We drop the reflexive arrows for each state for clarity of the
presentation. The boxed state stands for the actual world. Now, let us see what
happens after the first announcement is made.

(1) At least one of you has mud on your forehead.

In propositional logic, this statement has the following form: (1’) ma ∨mb ∨mc.
Since the children trust their father, they all eliminate world w8 in which (1’) is
false: none of the children is muddy. In other words, they perform an update with
formula (1’). The result is depicted in Figure 2.2.

Now the father asks for the first time:
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(w1 : ma,mb,mc)

(w3 : ma,mb,¬mc)

(w2 : ma,¬mb,mc)

(w5 : ma,¬mb,¬mc)

(w4 : ¬ma,mb,mc)

(w7 : ¬ma,mb,¬mc)

(w6 : ¬ma,¬mb,mc)

(w8 : ¬ma,¬mb,¬mc)

c
b a

b
cc

a

b

a b
c

a

Figure 2.1: Initial epistemic model of the Muddy Children puzzle

(w1 : ma,mb,mc)

(w3 : ma,mb,¬mc)

(w2 : ma,¬mb,mc)

(w5 : ma,¬mb,¬mc)

(w4 : ¬ma,mb,mc)

(w7 : ¬ma,mb,¬mc)

(w6 : ¬ma,¬mb,mc)

c
b a

b
cc

a

b a

Figure 2.2: Epistemic model after father’s announcement

(I) Can you tell for sure whether or not you have mud on your head?

The agents’ reasoning can be as follows. In world w6 agent c knows that he
is dirty (there is no uncertainty of agent c between this world and another in
which he is clean). Therefore, if the actual world was w6, agent c would know his
state and announce it. The same holds for agents a and b and worlds w5 and w7,
respectively. But in our story children stay silent. This is in fact equivalent to the
announcement that none of the children know whether they are muddy or not.
Formally: ¬(Kama ∨Ka¬ma)∧¬(Kbmb ∨Kb¬mb)∧¬(Kcmc ∨Kc¬mc). Now all
agents eliminate those worlds that do not satisfy this formula: w5, w6, w7. The
epistemic model of the next stage is smaller by three worlds (Figure 2.3).

At this stage it is again clear that if one of the w2, w3, w4 was the actual state
the respective agent would have announced their knowledge. But in our scenario
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(w1 : ma,mb,mc)

(w3 : ma,mb,¬mc)

(w2 : ma,¬mb,mc) (w4 : ¬ma,mb,mc)

c
b a

Figure 2.3: Epistemic model in the second stage of epistemic inference

the children still do not respond. Then the father asks again: ‘Can you tell for
sure whether or not you have mud on your forehead?’. Now the children base
their inference on the silence in the previous step, and come to the conclusion that
the actual situation cannot be any of w2, w3, w4. So, they all eliminate the three
states, which leaves them all with just one possibility (Figure 2.4). All uncertainty
disappears and they all know that they are dirty.

(w1 : ma,mb,mc)

Figure 2.4: Epistemic model in the third stage of epistemic inference

Public Announcement

All announcements made in the above scenario trigger an update of the epistemic
model according to Definition 2.2.5. The public character of the announcements
makes them influence all agents’ uncertainty ranges. Basic epistemic logic, as
defined above, can be extended to account for this type of update with a specific
‘action’ expression of public announcement, written as !ϕ.

Definition 2.2.7 (Syntax of LPAL). The syntax of epistemic language LPAL is
defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | [A]ϕ
A := !ϕ

where p ∈ Prop, i ∈ A.

Definition 2.2.8 (Semantics of LPAL). For the epistemic fragment LEL the in-
terpretation is given in Definition 2.2.3. The remaining clause of LPAL is as
follows.

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M | ϕ,w |= ψ
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An axiomatization PAL of LPAL can be composed of the previously given
axioms of epistemic logic enriched with the following reduction axioms (Plaza,
1989).

1 ` [!ϕ]p↔ (ϕ→ p), for p ∈ Prop
2 ` [!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)
3 ` [!ϕ](ψ ∨ ξ)↔ ([!ϕ]ψ ∨ [!ϕ]ξ)
4 ` [!ϕ]Kiψ ↔ (ϕ→ Ki[!ϕ]ψ)

Theorem 2.2.9 (Plaza 1989). The axiomatic system PAL is complete with respect
to the class of epistemic models.

The change that epistemic models undergo when subjected to public announce-
ment corresponds to the revision with so-called ‘hard’ information. Such a revision
is reasonable if the information originates from a reliable source.

2.2.2 Doxastic Logic

The notion of irrevocable knowledge defined in the previous subsection is very
strong. It implicitly indicates that unless complete certainty is reached, the agent
does not form any opinion on the state of the world. In order to talk about weaker
informational states, like belief, epistemic models have to be modified to account
for the order on states given by agents’ doxastic attitudes.

Definition 2.2.10 (Baltag & Smets 2006). An epistemic-plausibility model M
is a triple

(W, (∼i)i∈A, (≤i)i∈A, V ),

where W 6= ∅ is a set of states, for each i ∈ A, ≤i is a total well-founded preorder6

on W , and V : Prop→ P(W ) is a valuation.
A pair (M, w), where M = (W, (∼i)i∈A, (≤i)i∈A, V ) an epistemic plausibility

model and w ∈ W , is called a pointed epistemic plausibility model.
For each i ∈ A we will assume that ≤i ⊆ ∼i.

Now the language of epistemic logic can be extended to account for belief.

Definition 2.2.11 (Syntax of LDOX). The syntax of doxastic-epistemic language
LDOX is defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | Bψ
i ϕ

where p ∈ Prop, i ∈ A.

6A preorder is a binary relation that is reflexive and transitive. Later we will relax the
restriction to well-founded preorders and adjust the relevant definitions.
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Definition 2.2.12 (Semantics of LDOX). We interpret LDOX in the states of
doxastic-epistemic models in the following way.

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff it is not the case that M, w |= ϕ
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ
M, w |= Kiϕ iff for all v such that w∼iv we have M, v |= ϕ

M, w |= Bψ
i ϕ iff for all v ∈ Ki[w] if v ∈ min≤i(Ki[w] ∩ ‖ψ‖) then v |= ϕ

We define ‖ϕ‖ such that ‖ϕ‖ = {w ∈ W | w |= ϕ}.

The last clause defines the semantics of the conditional belief operator. An
agent is defined to believe ϕ in state w conditionally on ψ if ϕ is true in all states
that are minimal in the part of the uncertainty range of the agent restricted to
those states that make ψ true.

For axiomatizations of LDOX the reader is advised to consult (Board, 2004)
and (Baltag & Smets, 2008b).

Plausibility Upgrade

Epistemic plausibility models can accommodate public announcements of hard
information. Performing update on those structures has an effect analogous to
restriction of simple epistemic models. Such a change can of course result in belief
change. However, plausibility ordering gives an opportunity to define different,
more sophisticated operations on beliefs, operations that do not require state
deletion. As we will see in Chapter 4, such revisions are useful if the source of
information is not completely trustworthy.

Lexicographic Upgrade The lexicographic upgrade of an epistemic plausibility
model M = (W, (∼i)i∈A, (≤i)i∈A, V ) with a formula ϕ, rearranges the preorders
by putting all states satisfying ϕ to be more plausible then others. Let us take
≤ϕi = ≤i� ‖ϕ‖, and ≤ϕ̄i = ≤i� ‖¬ϕ‖.

Definition 2.2.13. The lexicographic upgrade of an epistemic plausibility model
M = (W, (∼i)i∈A, (≤i)i∈A, V ) with a formula ϕ is defined as follows:

M ⇑ ϕ := (W, (∼i)i∈A, (≤′i)i∈A, V ),

where for each i ∈ A and for all v, w ∈ Ki[w]:

v ≤′i w iff (v ≤ϕi w or v ≤ϕ̄i w or (v |= ϕ and w |= ¬ϕ)).

The language of announcements that trigger lexicographic upgrade is given in
the following way.
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Definition 2.2.14 (Syntax of L⇑). The syntax of the doxastic-epistemic language
L⇑ is defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | Bψ
i ϕ | [A]ϕ

A := ⇑ϕ
where p ∈ Prop, i ∈ A.

Definition 2.2.15 (Semantics of L⇑). For the doxastic-epistemic fragment LDOX

the interpretation is given in Definition 2.2.12. The remaining clause of L⇑ is as
follows.

M, w |= [⇑ϕ]ψ iff M ⇑ ϕ,w |= ψ

Conservative Upgrade The conservative upgrade (also known as minimal
upgrade or elite change, see Van Benthem, 2007) of an epistemic plausibility
model M = (W, (∼i)i∈A, (≤i)i∈A, V ) with a formula ϕ, rearranges the preorders
by making only the most plausible states satisfying ϕ more plausible than all
others, leaving the rest of the preorder the same. Let ≤restϕ

i = ≤i � {t ∈ S | t /∈
min≤i ‖ϕ‖}.
Definition 2.2.16. The conservative upgrade of an epistemic plausibility model
M = (W, (∼i)i∈A, (≤i)i∈A, V ) with a formula ϕ is defined as follows:

M↑ϕ := (W, (∼i)i∈A, (≤′i)i∈A, V ),

where for each i ∈ A and for all v, w ∈ Ki[w]:

v ≤′i w iff (v ≤restϕ
i w or v ∈ min≤i‖ϕ‖).

Definition 2.2.17 (Syntax of L↑). The syntax of the doxastic-epistemic language
L↑ is defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | Bψ
i ϕ | [A]ϕ

A := ↑ϕ
where p ∈ Prop, i ∈ A.

Definition 2.2.18 (Semantics of L↑). For the doxastic-epistemic fragment LDOX

the interpretation is given in Definition 2.2.12. The remaining clause of L↑ is as
follows.

M, w |= [↑ϕ]ψ iff M↑ϕ,w |= ψ

Complete axiomatization for the logics of the two types of upgrades can be
given by a complete axiomatic system for conditional belief complemented with
reduction axioms. Van Benthem (2007) gives a detailed discussion on the subject,
together with explicitly formulated axioms.

In Chapter 4 we will cover these upgrade methods again in a systematic way.
We will compare their reliability in the context of single-agent belief-revision.
In this, we will follow other attempts to analyze some classical belief-revision
problems within the framework of dynamic epistemic and doxastic logic.





Chapter 3

Learning and Epistemic Change

In the present chapter we show how the paradigms of learning theory and dynamic
epistemic logic can be linked. We will discuss the interface between learning theory
and dynamic epistemic logic in the context of iterated information change and
belief revision.

3.1 Identification as an Epistemic Process

In Chapter 2 we gave the prerequisites of formal learning theory with its central
notion of identification. Assuming the reader’s familiarity with those standard
tools, we will now discuss the epistemology behind finite and limiting identification.

What are the epistemic components of identification in the limit? The entan-
glement of the notions of knowledge, certainty and belief in limiting learning is
widely used in explanations of the paradigm. We quote Gold (1967) in his seminal
paper Language identification in the limit :

In the case of identifiability in the limit the learner does not necessarily
know 1 when his guess is correct. He must go on processing the infor-
mation forever because there is always the possibility that information
will appear which will force him to change his guess.

With time the epistemic metaphor in identification in the limit became even more
explicit, involving notions of certainty, justification, possible worlds, etc.:

[...] Thus the Scientist is never justified in feeling certain that her last
conjecture will be her last.

On the other hand, [identifiability in the limit] does warrant a different
kind of confidence, namely that systematic application of guessing rule
will eventually lead to an accurate, last conjecture [...]. If we know

1The emphasis is mine.
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that the actual world is drawn from [a class identifiable in the limit],
then we can be certain that our inquiry will ultimately succeed [...].
(Jain et al., 1999, pp. 11–12)

Later, even notions of introspection of knowledge, belief and reliability were
introduced:

This does not entail that [the learner] knows he knows the answer, since
[...] [the learner] may lack any reason to believe that his hypotheses
have begun to converge. Nonetheless, to the extent that the reliability
perspective on knowledge can be sustained, our paradigms concern
scientific discovery in the sense of acquiring knowledge. (Martin &
Osherson, 1998, p. 13)

Finally, the epistemic dominance of limiting identification over certainty has been
once summed up in the following way:

True, there are good reasons for preferring the computable way of
deriving knowledge. We know the results of computations, and only
think we know the results of trial and error procedures [viz. limiting
computation]. There are many reasons for preferring knowing to
thinking (as Popper, 1966, observed). But that does not change the
fact that sometimes thinking may be more appropriate. (Kugel, 1986,
p. 155)

Our aim is to expose the epistemology that runs the limiting learning process from
behind the scenes. Let us start by overviewing the components of identification and
discussing their correspondence with the approach of epistemic logic as described
in Chapter 2.

Class of hypotheses The procedure of learning starts with a class of hypotheses,
a class of possible states of the world. It can be interpreted as the background
knowledge of Scientist, his uncertainty range (see, e.g., Martin & Osherson, 1997).
Scientist expects that one of the possibilities is true, and in the framework it is
guaranteed that he is right—Nature indeed chooses one from the class fixed in the
beginning. Among the consequences of such a treatment of background knowledge
is that the actual world is always one of the options Scientist considers possible.
Another implication is that learning is not simply verifying or falsifying a single
hypothesis, although those two processes can be viewed as important components
of identification (Gierasimczuk, 2009b). The fact of picking one from a class is an
important factor in learnability analysis. It allows considering learnability as a
property of classes of hypotheses determined by some external properties.
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Different nature of data and conclusions The key word “learning” is often
used in the context of belief revision and dynamic epistemic logic. There it
takes the form of one-step “learning that ϕ”, followed by a modification of the
informational state of the agent—usually by various ways of simply accepting ϕ as
it is. In other words, the agent “learned that ϕ” means that the agent “got to know
that ϕ”. In the setting of formal learning theory it requires more effort than that
to be declared to have learned something. First of all, the incoming information is
by default spread over more than one step. The inductive, step-by-step nature of
this inference is essential; the incoming pieces of data are of a different nature than
the actual ‘thing’ being learned. Typically, at each finite step the environment
gives only partial information about a potentially infinite set. The relationship
between data and hypothesis is like the one between sentences and grammars,
natural numbers as such and Turing machines. Namely, if we know the hypothesis,
we can infer what kind of possible data are going to appear, but in principle we
will not be able to make a conclusive inference from data to hypotheses. Therefore,
in learning theory we say that an agent “learned that a hypothesis holds” if he
converged to this hypothesis on data that are consistent with the actual world.

Positive, true, and readable data There are three important assumptions
that the incoming data can satisfy:

1. Truthfulness (soundness). Scientist receives only true data, no false infor-
mation is included. This assumption leads to, e.g., the priority of incoming
data over the current conjecture and background preferences of Scientist.

2. Positiveness. Scientist receives only elements of positive presentation (text)
of the object being learned. Alternatively, together with positive also all
negative information could be included (informant), e.g., for set learning
the graph of the characteristic function of the set could be enumerated.

3. Readability. Scientist has a complete clarity about what information he
receives. A further step would be to analyze the situation of uncertainty
about the incoming information.

4. Completeness. The data that are consistent with the actual world are all
eventually enumerated.

In formal learning theory it is usually assumed that the incoming information is
readable and complete. The source of data is also taken to be truthful. Occasional
errors are rarely taken into account, and in more applied disciplines are interpreted
as noise (see, e.g., Grabowski, 1987). In contrast, the general epistemic framework
allows erroneous information in form both of mistakes and intentional lies. In
this respect the original learning theory conforms more to the assumptions of the
philosophy of scientific inquiry (Nature never lies) than to, e.g., conversational
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situations (see, e.g., Grice, 1975). Another classic requirement put on data is
that it is positive, i.e., data enumerates only elements of the language. This
assumption is often challenged by involving negative information, data indicating
which elements are not in the set. This setting boosts the power of learning
immensely (see Gold, 1967). It should be noted here that data including both
positive and negative samples gives remedy to errors. There is enough expressive
power so that any information inconsistent with the actual world can be accounted
for truthfully later on in the process.

Inductive, step-by-step process As briefly mentioned in the previous points,
the process of restricting the hypothesis space to only those hypotheses that
are consistent with the incoming data resembles update or public announcement
(Baltag et al., 1998). Can learning in the limit of hypothesis h be viewed as the
result of announcing the conjunction of data that lead to stabilization on h? First
let us observe that the point of convergence to a correct hypothesis is unknown
and in general uncomputable, which makes it also uncomputable to discover
which finite sequence resulted in the success of the learning process. Even more
importantly, finite sequences of data cannot be seen as a single announcement of
a given hypothesis, because which hypothesis is in fact announced by the data
heavily depends on the initial hypothesis space. For instance, let us consider
two classes: C1 = {{1}, {2}} and C2 = {{1}, {1, 2}}, and let h1 be a hypothesis
corresponding to the set {1}. In this case the single event of updating with 1
is equivalent to announcing h1 in case C1 had been the initial set of hypotheses,
but it does not announce h1 when Scientist has to pick from C2, since the other
hypothesis is still possible.

Infinite procedures The learning theory framework is defined for potentially
infinite universes, but even for finite worlds the sequences of data are infinite.
The reason for this is that we want to account for situations when Scientist does
not know the finiteness or size of the entity he investigates. If the initial class
of hypotheses is not drastically restrictive, Scientist can never know whether all
the elements have already been enumerated. This leads to infinite procedures
and conditions defined in the limit. Our epistemic setting should reflect these
properties. It should allow talking about epistemic states as invariant from some
point onwards, without specifying when this happens. Such an approach to
learning is not unheard of in epistemic logic and belief-revision. There is an
ongoing philosophical debate about iterated belief revision, iterated epistemic
update, stability of knowledge, etc. (see, e.g., Stalnaker, 2009). As we will show
they directly correspond to our limiting processes.

Non-introspective knowledge The success of limiting learning can be defined
as reaching an epistemic state that can be called ‘knowledge’. What kind of
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knowledge is it? On the surface it seems to be pretty close to the classical justified
true belief (see, e.g., Chisholm, 1982), the definition ascribed to Plato. Indeed,
eventually Scientist puts forward a hypothesis that is true, he believes that it is
true, and moreover he has some reasons to choose it and those reasons can be
viewed as a (often very limited) justification. However, from the perspective of
the agent this ‘knowledge’, preceded by a sequence of belief changes, is strictly
operational, the work is always in progress. There seems to be some issue with
introspection here—Scientist is not able to point out the successful guess, he does
not know whether he will not be forced to change his guess again in the light
of future data (for the discussion of the introspection of knowledge in inductive
inference see Hendricks, 2003). On the other hand it is more than just a true
belief—it is immune to change under new true information.

Single agent As mentioned before, in learning theory the data are assumed
to be complete and true. In our view, this is the reason why learners are pretty
lonely in this paradigm. Although in principle, science as well as learning seem
to be at least a two-player game that includes a teacher and a learner (a sender
of the information and a receiver), for many algorithmic reasons the role of the
former has been minimized. As a result we are concerned here only with the role
of Scientist. Nature can be viewed as an objective, uninvolved source of data.
In a sense this constitutes an assumption of fairness. Nature does not intend
to help or disturb the process. As a result, learning theory is predominantly a
one-agent business. A hint of multi-agency can be associated with team-learning,
a framework suggested by Blum & Blum (1975), explicitly introduced by Smith
(1982) and since then extensively studied (for an overview see Jain & Sharma,
1996). However, multi-agency understood in this way can be summed up as
learners working on their own contributing to some common, bigger goal. The
topic of communication and (non-)cooperativeness of the learners is marginal
here. Dynamic epistemic and dynamic doxastic logics study these notions of
multi-agency explicitly, and this is in fact their main focus (for the benefits of a
multi-agent approach to epistemic issues see Van Benthem, 2006).

3.2 Learning via Updates and Upgrades

With the above discussion in mind we can now turn to the question of how
learning-theoretic notions can be approached from the perspective of the epistemic
framework.2

Let us fix C = {S1, S2, . . .} to be a class of sets. It can be interpreted as
the initial epistemic model, representing the background knowledge of Scientist

2Our considerations are of semantic nature and therefore differ from the computable framework
of learning theory. E.g., one of the consequences is that we assume the property of consistency
of learning, which in formal learning theory is optional.
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together with his uncertainty about which world is the actual one. Let us take
the initial epistemic model to be formally defined as

M = (C,∼),

where C is the set of worlds and ∼ ⊆ C × C is an uncertainty relation for Scientist.
For now we do not require any particular preference of the scientist over C—all
possibilities are equally plausible. Hence, we can for now assume that ∼ is a
universal equivalence relation over C. The initial epistemic state of the Scientist
is depicted in Figure 3.1. This model corresponds to the starting point of the
scientific discovery process. In the beginning Scientist considers all of them
possible. Scientist is given the class of hypotheses C, i.e., he knows what the
alternatives are.

S1 S2 S3 S4
. . .∼ ∼ ∼ ∼

Figure 3.1: Initial epistemic model

Next, Nature decides on some state of the world by choosing one possibility
from C. Let us assume that, as a result, S4 is the chosen world. Then, she decides
on some particular environment ε, consistent with S4. We picture this enumeration
in Figure 3.2 below.

...

ε1

ε2

ε3

ε4

Figure 3.2: Environment ε consistent with S4

The sequence ε is successively given to Scientist. Let us focus now on the first
step of the procedure. A piece of data ε1 is given to the scientist. In Figure 3.3
Scientist’s confrontation with ε1 is depicted. Scientist can react to this new
information by adjusting his epistemic state in different ways.
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3.2.1 Learning via Update

Epistemic Update

One way for Scientist to incorporate a new piece of data is to update3 his status
with ε1. This is done by eliminating all the sets that do not include ε1. We can
represent the process formally by the update of M with ε1, (M | ε1), resulting
in a new epistemic model M′ = (C ′,∼′), where: C ′ = {Sn ∈ C | ε1 ∈ Sn} and
∼′ = ∼� C ′.

S1 S2 S3 S4
. . .

ε1

Figure 3.3: Confrontation with data

Scientist tests C with ε1. If a set includes the information, it remains as a
possibility, if it does not, it is eliminated (see Figure 3.4). Let us assume that ε1

is not consistent with S1 and S3.

S1 S2 S3 S4
. . .

× S2 × S4
. . .

ε1

Figure 3.4: Epistemic update

This epistemic update can be iterated infinitely many times along ε resulting
in an infinite sequence of models whose result according to the lines of DEL can
be called the ε-Generated Epistemic Model (see, e.g., Van Benthem, Gerbrandy,
Hoshi, & Pacuit, 2009).

Definition 3.2.1 (Generated epistemic model). The generated epistemic model
Mε, with ε = ε1, ε2, ε3, . . ., is the result of update (((M | ε1) | ε2) | ε3) | . . .

To stay true to our original learning-theoretic motivation we want to inves-
tigate how the epistemic model changes when ε is given in a stepwise fashion.
In particular, we would like to focus on its convergence properties. Our mod-
eling involves only the equivalence relation, which mirrors not only the agent’s
uncertainty, but also indifference with respect to what is the actual world. This
approach is especially and, we could argue, exclusively suited for interpreting the
rise of irrevocable knowledge. That is, the agent is said to know something if this

3The event of update is a simple single-agent version of public announcement (Baltag et al.,
1998).
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something is true in all worlds in his uncertainty range defined by the equivalence
relation. Therefore, we will be particularly interested in the convergence to the
state of such knowledge, i.e., in our case in convergence to the situation in which
only one, true set is left. Then we will say that the scientist learned with certainty
what is the actual world. The possibility of reaching certainty in an epistemic
model by the use of updates resembles the setting of finite identifiability. To recall
the latter let us give a short example.

Example 3.2.2. Let us take C = {S1, S2, S3}, such that Sn = {1, ..., n}, for
n ∈ {1, 2, 3}. Nature makes her choice regarding the identity of the world. Let
us assume that, as a result, S3 is the actual world. Then, Nature chooses an
enumeration ε = 1, 2, 1, 3, 2, . . .. After the first piece of data, 1, the uncertainty
range of the scientist includes the whole C. After the second, 2, the scientist
eliminates S1 since it does not contain the event 2 and now he hesitates between
S2 and S3. The third piece, 1, does not change anything; however, the next one, 3,
eliminates S2. Uncertainty is eliminated. He knows that S3 is the actual world.
Therefore, we can say that he learned it conclusively, with certainty.

In Chapter 5 we will show that finite identifiability can be modeled within
the dynamic epistemic logic framework, with the use of: possible worlds for
sets; propositions for the incoming information; and update for the progress in
eliminating uncertainty over the hypothesis space.

Plausibility Update

The epistemic, update-based approach as set out above is very restrictive with
respect to the outcome of learning. At best, we have been able to account only
for finite identification, and not for learning in the limit. In order to move to
identification in the limit we need to be able to talk about sequences of conjectures
of Scientist. Until now this was impossible because the only ‘conjecture’ that we
were able to define was a final irrevocable conclusion. So we want to enrich the
framework to account for a current conjecture—a hypothesis that is considered
appropriate in a given step of the procedure.

Let us consider the following example of a learning scenario, in which the
uncertainty is never eliminated.

Example 3.2.3. In Example 3.2.2 Scientist was very lucky. Let us assume for
a moment that nature had chosen S2 = {1, 2}, and had fixed the enumeration
ε = 1, 2, 1, 2, 2, 2, 2, . . . In this case Scientist’s uncertainty can never be eliminated.

This example indicates that the central element of the identification in the
limit model is the unavoidable presence of uncertainty. The limiting framework
allows, however, introducing some kind of operational knowledge (for an account
of procedural knowledge see Hoshi, 2009), that is expressed by the stability of the
conjectures of the learning function.
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To model an algorithmic nature of the learning process that includes the actual
guess and other not-yet-eliminated possibilities, we can enrich the epistemic model
with some plausibility relation. The relation ≤ represents some preference over
the set of hypotheses. E.g., if Scientist is an Occamist, the preference would be
defined according to the simplicity of hypotheses. In the initial epistemic state the
uncertainty of the scientist again ranges over the whole of C. This time however
the class is ordered and Scientist’s current belief is the most preferred hypothesis.4

Therefore, we consider the initial epistemic plausibility state of Scientist to be:

M = (C,∼,≤).

The procedure of erasing worlds that are inconsistent with successively incoming
data is the same as in the previous section. This time however let us introduce the
current-guess state which is interpreted as the actual conjecture of the Scientist.
It is always the one that is most preferred—the smallest one according to ≤. In
doxastic logic a set of most preferred hypotheses is almost invariably interpreted as
the ones that the agent believes in. Let us go back to Example 3.2.3, where Nature
chose world S2. After seeing 2 and eliminating S1, Scientist’s attention focuses on
S2; then S2 is his current belief. It is the most preferred hypothesis, and as such
can be repeated as long as it is consistent with ε. In this particular case, since
Nature chose a world consistent with S2, it will never be contradicted, so Scientist
will always be uncertain between S2 and S3. However, his preference directs him
to believe in the correct hypothesis, without his being aware of the correctness.
The belief in a hypothesis may become safe—whatever true information is given,
it will not force the scientist to change his mind. And this state of safety while
maintaining uncertainty is intuitively the one that occurs in identification in the
limit. According to the picture sketched here, we will show (in Chapter 4) that
learning in the limit can be modeled within the dynamic doxastic logic framework,
using: possible worlds for sets; propositions for incoming information; update for
the progress in eliminating uncertainty over the hypothesis space; a plausibility
relation for the underlying hypothesis space; in each step of the procedure, the
most preferred hypothesis as the actual positive guess of the learning function.

3.2.2 Learning via Plausibility Upgrades

Extending this approach we will also investigate different ways of reacting to the
incoming information: except for update we will also consider ways of upgrading
the preference relation as a reaction to new data. Upgrades are useful when update
is too strong—in the situations in which the source of information is not entirely

4For now we do not pose any restriction on the plausibility ordering. The conditions of
well-foundedness or connectedness of the plausibility ordering are often assumed of such doxastic
situations. As we will see later, in our setting, the well-foundedness of the initial plausibility
preorder might not always be possible.
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reliable. We want to focus on two types of upgrades: lexicographic and minimal
(see Chapter 2). Upgrades can be performed on the epistemic plausibility models
step-by-step as in the case of iterated update. Interpreting the minimal hypotheses
as the ones that the agents believes in at any finite point of the procedure, again
allows considering sequences of conjectures.

3.3 Learning as a Temporal Process

In the above-described paradigm each hypothesis from the given class is associated
with the corresponding set of environments. The latter can be seen as possible
“streams of events” or “histories” that may occur if the relevant hypothesis is true.
A history can in its turn be represented as a branch in the tree of all possible
courses of events. Accordingly, hypotheses can be viewed as sets of histories or
trees. The intuitive way to deal with hypotheses in a temporal framework is to
introduce a temporal model of all the possible streams of information determined
by the hypothesis.

Let us consider a set C = {{1}, {1, 2}, {1, 2, 3}} and the corresponding set
of hypotheses IC = {h1, h2, h3}. We know that h1 corresponds to the set {1},
so it is consistent with only one environment ε = 1, 1, 1, 1, 1, . . . Therefore, it
can be identified with only one possible sequence of events, history H, which is
represented by the frame presented in Figure 3.5.

h1
. . .1 1 1 1 1

Figure 3.5: History for hypothesis h1

It is of course different for the hypothesis h2 which corresponds to the set
{1, 2}. Here, possible histories are all ω-sequences over the set {1, 2}, that include
at least one occurrence of 1 and 2. Therefore the hypothesis is represented as a
binary tree.

Let us put this idea formally. If S is a set, then S∗ is the set of all finite
sequences over S (all finite strings of elements of S). Let us take a class C and
Sn ∈ C. The set Sn determines an epistemic temporal logic frame

F = (Sn, Hn,∼),

where Hn = S∗n is a protocol (says which sequences of events are allowed), that is
closed under non-empty prefixes; and ∼ is a binary relation on Hn.

Such an epistemic temporal frame indicates which sequences of data can be
expected when the corresponding hypothesis is true. This way of thinking allows
viewing the class of hypotheses C as a set of protocols, a forest of temporal frames
(see Figure 3.6).
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...
S3

. . .
. . .

S2

. . .

. . .
. . .

S1
. . .

. . . . . .

Figure 3.6: Epistemic temporal forest F

To sum up, we interpret hypotheses to be sets of histories, i.e., sets of sequences
enumerating events. Therefore, we can reinterpret the possible realities as sets of
functions. This approach leads to a generalized, uniform view of learnability of
various structures. Function learning and set learning become analyzable on a
common ground.

To account for identification in the limit, following the argumentation of
previous sections it seems to be necessary to enrich the temporal models with
plausibility ordering that will account for the beliefs at each level of the temporal
forest. The latter can be generated from the initial class as in the previous case.
Then the temporal epistemic plausibility frame is given as follows:

F≤ = (Sn, Hn,∼,≤).

Our aim in all the above described semantic interpretations is to give an
epistemic (temporal) characterization of learnability.

3.4 Summary

In this chapter we gave an introduction to our modeling of the process of inductive
inference in dynamic epistemic logic and dynamic doxastic logic. For now we
avoided formalism in order to first provide motivation and basics of the transition
from one framework to another. In particular, we indicated that update is appro-
priate to analyze the notion of finite identifiability as convergence to knowledge.
Learning in the limit, on the other hand, has to be supported by an underlying
ordering of the hypothesis space. This indicates that it should be formalized in
doxastic logic, where the preference or plausibility relation is a standard element
of any model, and identification in the limit is viewed as reaching safe belief. We
also proposed to view one component of the learning paradigm, hypotheses and
hypothesis spaces, as temporal models. This allows investigating properties of
the epistemic revision that requires certain sequences of events, conforming to
some temporal protocols. We postulate that identifiability can be expressed in
temporal logic interpreted over the corresponding epistemic temporal forests.
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Chapter 4

Learning and Belief Revision

Learning can be described as a process of acquiring new information. This
acquisition can take forms as different as things are that can be learned. We
say: ‘He learned that she cheated on him’ or ‘She learned about his disease’, but
also: ‘She learned a language’ or ‘He finally learned how to behave’. The first two
sentences are about a change in informational state induced by accepting a fact,
getting to know something. The latter two are different, they describe a situation
in which an inductive acquisition process came to a successful end.

The first kind of learning—getting to know about facts—is formalized and
analyzed in the domain of belief revision and the diverse frameworks of epistemic
and doxastic logics. The main aim here is to formalize the elementary dynamics
of knowledge and epistemic attitudes towards incoming information.

The second kind—learning as a process—is studied within the framework of
formal learning theory. In this framework a general concept (language, grammar,
theory) gets to be identified by an agent on the basis of some elementary data
(sentences, results of experiments) over a long period of time. The learning agent
is allowed to change his mind on the way, and the process is successful if it results
in convergence to an appropriate hypothesis. In a sense this kind of learning is
built on top of the first kind, it consists of an iteration of simple getting-to-know
events.

In this chapter we propose a way to use the framework of learning theory to
evaluate belief-revision policies. Our interest is shared by at least two existing
lines of research. Kelly, Schulte, & Hendricks (1995) and Kelly (1998a,b, 2004,
2008) focus on bringing together some classical belief-revision policies (among
others those proposed by Boutilier, 1996; Darwiche & Pearl, 1997; Grove, 1988;
Spohn, 1988) with the framework of function learning (see Chapter 2, Section
2.1.3, and for more details Blum & Blum, 1975). In this attempt the possible
concepts to be learned or discovered are the possible sequential histories. The
problem of prediction which seems to be at the heart of this approach is obviously
useful for modeling certain kind of scientific inquiry. However in general, changes
of epistemic states do not have to happen according to some prescribed sequence.

41
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They are often governed by sequences of facts that are closed under permutation
with respect to their informational content.

Martin & Osherson (1997, 1998) have also worked on establishing the connection
between learning theory and belief revision. Their attempt has its roots in the
classical AGM framework (Alchourrón et al., 1985) and treats belief revision as a
two step process: the shrinking of the current belief state to accommodate the new
information (belief contraction) and the incorporation of the data (see Levi, 1980).
In this approach, the dominant features of modeling inductive learning as iterated
belief revision are that the belief state is treated syntactically, as a set of sentences
of a given language, and is assumed to be a full-blown theory (closed under the
operation of consequence), incoming data get a fully trusted welcome, and last but
not least, the agent does not explicitly consider other, perhaps counter-factual,
possibilities.

Following Gierasimczuk (2009a,c) and Dégremont & Gierasimczuk (2009) we
advance a different line of research. On the inductive inference side, we are
interested in the paradigm of language learning which is more general than the
aforementioned function learning approach. We assume that the data are observed
in a random manner, so that in general predicting the future sequence is not
feasible, or even relevant. As possible concepts that are inferred we take sets
of atomic propositions. Therefore, receiving new data corresponds to getting to
know about facts. On the side of belief revision we follow the lines of dynamic
epistemic logic (see Van Benthem, 2007). Hence, we interpret current beliefs of
the agent (hypothesis) as the content of those possible worlds that he considers
most plausible. The revision does not only result in the change of the current
hypothesis, but can also induce modification of the agent’s plausibility order.

We are mainly concerned with identifiability in the limit (Gold, 1967). In
the first part we restrict ourselves to learning from sound and complete streams
of positive data. We show that learning methods based on belief revision via
conditioning (update) and lexicographic revision are universal, i.e., provided certain
prior conditions, those methods are as powerful as identification in the limit. Those
prior conditions, the agent’s prior dispositions for belief revision, play a crucial
role here. We show that in some cases, these priors cannot be modeled using
standard belief-revision models (as based on well-founded preorders), but only
using generalized models (as simple preorders). Furthermore, we draw conclusions
about the existence of tension between conservatism and learning power by showing
that the very popular, most ‘conservative’ belief-revision methods, like Boutilier’s
minimal revision, fail to be universal. In the second part we turn to the case of
learning from both positive and negative data. Here, along with information about
facts the agent receives negative data about things that do not hold of the actual
world. We again assume these streams to be truthful and we draw conclusions
about iterated belief revision governed by such streams. This enriched framework
allows us to consider the occurrence of erroneous information. Provided that
errors occur finitely often and are always eventually corrected we show that the
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lexicographic revision method is still reliable, but more conservative methods fail.
Before we get to the formal content of this chapter, let us first give two additional
philosophical motivations for our work.

Evaluation of Belief-Revision Policies The traditional approach to the prob-
lem of belief revision (Alchourrón et al., 1985) can be summed up in the following
way. The belief is taken to be a set of sentences, often assumed to be closed under
some operation of consequence. Then, confronted with an incoming sentence
the belief set has to undergo some transformation. If the sentence is consistent
with the belief set, it is simply set-theoretically added, and the set is extended
to include all consequences. If the sentence contradicts information contained in
the set, the latter has to be modified by first removing inconsistency, and only
then performing the addition. In general the belief-revision procedure takes the
following form:

〈belief set, proposition〉 → revised belief set;

in other words:
〈S, α〉 → S ∗ α.

Intuitively, belief revision, in order to be rational, has to conform to certain general
rules. An intuitive set of rules of this kind, or axiomatization, if one prefers, of
belief revision has been proposed by Alchourrón et al. (1985). Investigations into
the properties of this type of revision led to the following difficulty: often there is
more than one way to make a set consistent with some initially inconsistent input.
For instance, if the belief set S = {ϕ, ϕ→ ψ}, and the incoming information is
¬ψ then dropping either of the sentences in S would make the set S consistent
with ¬ψ. How do we decide which one should be chosen? This problem indicates
the need for some preference order that underlies beliefs and governs the order
of potential elimination (Alchourrón et al., 1985). The postulate of ordering the
beliefs according to their entrenchment has essentially enriched the framework.
The results indicating the necessity of orders led to involving them explicitly as
parts of belief states. A system that accounts for the ordering has been provided
by Grove (1988), who represented AGM postulates in terms of systems of spheres.
This modeling is a direct predecessor of the modal logic based approach to belief,
as it presupposes a total well-founded preorder on the initial uncertainty range.
The framework then conformed to a new scheme:

〈(belief set,≤), proposition〉 → (revised belief set, revised ≤);

in other words:
〈(S,≤), α〉 → (S ∗ α,≤α).

This approach led to many new questions, among others: the origin and
justification of ≤; possible ways of transforming ≤ and the ways in which they
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are (or should be) chosen.
Although this approach has been shown to be quite powerful, it is also very

controversial in the fact that it is very syntactic. Dependence on the specific
language and closing off under a consequence relation present problems when
comparing it to linguistic and cognitive reality. In the meantime an alternative,
more semantic approach to belief change has been developed, in which modal logic
turns out to be very useful (see Stalnaker, 2009). Despite those developments
the old uneasiness remains. How are we supposed to judge and choose between
different belief-revision policies? Perhaps, by introducing another level in which
some new preference relation will order different policies and this preference
ordering itself should become a matter of taste or character? Rott (2008) expects
that this question will eventually lead to some sort of circularity in the domain
of belief-revision theory. It can be argued that this problem could ultimately be
solved only by psychological research in human cognitive tendencies. He poses
the following two options as answers to this difficulty:

One option is to insist on divide-and-conquer strategy: Researchers in
belief revision should put their efforts into finding out which methods
are best in which contexts. [...] [A] second option. This option
assumes that there is some level in the belief state hierarchy up to
which constraints of rationality reside, but above which, at all higher
levels, we are just describing, in an idealized way, various ways that
people happen to be. [...] In this perspective, there are no objective
standards for rationality beyond the first level as characterized by
AGM.

In the present chapter of this book we will challenge this position by showing
that applying certain types of rules in certain contexts can be analyzed in terms
of whether they can be relied upon in the ‘quest for the truth’ (the analysis of
inductive inference in terms of reliability has been for the first time provided by
Kelly, 1996). We will analyze certain belief-revision policies in terms of their
dependability and show differences in their learning power. In our framework we
can naturally treat the procedural aspect of iterated belief revision, address some
intermediate stages of such iterations and relate them to the ultimate success of
a belief-revision policy. Hence, belief-revision methods can get evaluated on the
basis of their learning power. Finally, it can be argued that the above-mentioned
‘different ways that people happen to be’ can be traced as evolutionary equilibria
that correspond to effectiveness and reliability of methods.

Safety and Stability of Beliefs The classical definition characterizes knowl-
edge as true justified belief (see, e.g., Chisholm, 1982). In a modern setting this
has been formalized as the state of certainty, because a decent justification of
a theory should eliminate all other possibilities. Such definition is difficult to
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accept from a philosophical standpoint, and many arguments against it can be
(and have been) formulated (see, e.g., Gettier, 1963). One of them is that in fact
knowledge is a dynamic phenomenon and it rarely occurs in the form of irrevocable
states of certainty. Alternatives oscillate around the concept of knowledge as
safe belief. The strength of safety is in the guarantee it gives: the safe belief is
not endangered by the occurrence of true data. If we restrict our considerations
to truthful information, or at least assume that mistakes happen rarely, safety
can be reformulated in terms of stability. In other words, knowledge emerges
when stability is reached. The need for such a notion appeared in many different
frameworks: from reaching an agreement in a conversational situation (see, e.g.,
Lehrer, 1965, 1990) to the considerations in the domain of philosophy of science
(see, e.g., Hendricks, 2001).

In this work we account for and characterize the emergence of both: the
restrictive kind of knowledge (certainty) and stable belief. We explicitly formulate
the conditions under which certain belief states give raise to the emergence of
such epistemic and doxastic states.

Finally, inspired by Nozick (1981), Rott (2004) puts forward that perhaps:

[...] knowledge [should] be made of still sterner stuff—stuff that also
survives (a modest amount of) misinformation.

In the following sections we will show that under the requirement of convergence
to stable belief some policies are still reliable if a finite number of errors occur
and they are all corrected later in the process.

4.1 Iterated Belief Revision

In our analysis of single agent information-update and belief revision we will
redefine the framework of dynamic epistemic logic in order to simplify things.
As we are here concerned with the single-agent case and moreover, we take the
incoming information to be propositional, we will focus on the notion of epistemic
state, i.e., a set of possible worlds.

Definition 4.1.1. A possible world is a valuation over Prop, and it can be
identified with a set s ⊆ Prop. We say that p is true in s (write s |= p) if and
only if p ∈ s.

The uncertainty range of an agent is represented as a set of worlds that the
agent considers possible.

Definition 4.1.2. An epistemic state is a set S ⊆ P(Prop) of possible worlds.
A pair (S, s), where S is an epistemic state and s ∈ S is called a pointed epistemic
state.
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With respect to the setting defined in Chapter 2, epistemic states of the agent
i associated to the epistemic modelM = (W, (∼i)i∈A, V ) are given by equivalence
classes in W/∼, in other words, a pointed epistemic state of an agent i is a pair
(Ki[w], w).

In accordance with the semantics of basic epistemic logic, we will interpret the
knowledge operator in the usual way.

Definition 4.1.3 (Semantics of LEL in epistemic states). We interpret the single-
agent LEL in the epistemic states in the following way.

S, s |= p iff p ∈ s
S, s |= ¬ϕ iff it is not the case that s |= ϕ
S, s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ
S, s |= Kϕ iff S ⊆ ‖ϕ‖

Accordingly, our simplified approach will be extended to the doxastic framework.
By enriching the epistemic state with a plausibility relation we consider epistemic
plausibility states. To model beliefs, we need to specify some subset S0 ⊆ S of
the epistemic state, consisting of the possible worlds that are consistent with the
agent’s beliefs. The intuition here is that although the agent considers all worlds
in his epistemic state possible, some of them are seen as more ‘desirable’, those
will be given as the minimal ones according to the plausibility order.

Definition 4.1.4. A prior plausibility assignment S 7→ ≤S assigns to any epis-
temic state some plausibility order based on the original epistemic state.

Definition 4.1.5. A plausibility state is a pair (S,≤) of an epistemic state S
and a total preorder ≤ on S, called a plausibility relation.

An epistemic state together with some prior plausibility assignment constitute
a plausibility state. Here as in the case of plausibility models we will assume the
plausibility relations to be arbitrary total preorders. We will sometimes essentially
require their non-well-foundedness.

The language LDOX is interpreted on plausibility states in the same way as
LEL. The missing clause of belief is given in the following way:

S,≤, s |= Bϕ iff ∃w ≤ s ∀u ≤ w u |= ϕ.

In the case when ≤ is well-founded, the usual definition of ‘belief as truth in all
the most plausible worlds’ holds, i.e., if (S,≤) is a plausibility state, then for all
s ∈ S:

S,≤, s |= Bϕ iff min≤S ⊆ ‖ϕ‖.

Our aim now is to reconstruct iterated belief revision in a strict correspondence
with identifiability in the limit. We will analyze the epistemic and doxastic
properties of limiting learning and the influence of various epistemic attitudes on
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the process of convergence. Later we will compare the power of learning in the
limit with the capabilities of various belief-revision policies. Before we get to them,
we need to set some basic notions of incoming data. As mentioned before, we are
interested in (possibly indefinite) iterations—to get the kind of full generality we
need to consider infinite streams of information.

Our streams of data consist of chunks of information—every such chunk is a
finite set of atomic propositions.

Definition 4.1.6. A positive non-deterministic data stream is an infinite sequence
ε = (ε1, ε2, . . .) of finite sets εi of propositions from Prop.

The intuition is that, at stage i, the agent observes the data in εi. The data
set ∅ corresponds to making no observation. For clarity, we will call finite parts of
such data streams data sequences.

Definition 4.1.7. A data sequence is a finite sequence σ = (σ1, . . . , σn), where
for every 0 < i ≤ n, σi is a finite subset of Prop.

Besides the usual notation given for texts in Definition 2.1.2, we will also use
the concatenation of data sequences.

Definition 4.1.8. Let σ and π be data sequences. We write σ ∗ π to denote the
concatenation of the two strings, i.e., if σ = (σ1, . . . , σn) and π = (π1, . . . πk), then
σ ∗ π = (σ1, . . . , σn, π1, . . . πk). For simplicity, if ρ is a finite set of propositions,
then σ ∗ ρ = (σ1, . . . , σn, ρ).

As explained in Section 2.1, data streams are not entirely arbitrary, they should
reflect reality, be consistent with the actual world. The analogy with scientific
inquiry can be used here: one can base theories on the results of experiments
if the results are assumed to be consistent with reality. This property of data
streams will be called ‘soundness’.

Definition 4.1.9. A positive data stream ε is sound with respect to world s iff
all data in ε are true in s, i.e., set(ε) ⊆ s.

Another restriction on data streams is that, since they are infinite, they should
enumerate all elements that are true in the actual world. In other words, if we
wait long enough we will see it all. This property of data streams will be called
‘completeness’.

Definition 4.1.10. A positive data stream ε is complete with respect to world s
iff all the true atomic propositions in s are in ε, i.e., if s ⊆ set(ε).

Throughout the most of this chapter we will assume the data streams for some
world s to be sound and complete with respect to s, i.e., we will assume that
s = set(ε).



48 Chapter 4. Learning and Belief Revision

In standard learning theory such positive, sound and complete data streams
are called ‘texts’ (see Chapter 2). They are restricted only to the streams in which
all the observed data εi are either singletons {p} (consisting of a positive atom
p ∈ Prop) or ∅ (‘no observation’). The above definitions allow observing more
than one atomic fact at a time. In our formalism each piece of information ranges
over finite εi, and therefore the classical learning theory setting is equivalent to
ours.

Until now learning methods have been described generally as ways of converting
epistemic states into belief sets in a way dependent on the incoming information.
In order to approach the subject of learning as an iterated belief-revision process,
we will now turn to the more constructive part of our paradigm—the belief-revision
methods themselves. The long-term aim that we have in mind is to define and
investigate learning methods that are governed by belief-revision policies.

We define a belief-revision method as a function that, given some data sequence,
transforms plausibility states.

Definition 4.1.11. A belief-revision method is a function R that given any
plausibility state (S,≤) and a data sequence σ = (σ1, . . . , σn) (of any finite length
n), outputs a new plausibility state

R((S,≤), σ) := (Sσ,≤σ).

Our notion of belief-revision method is more general than the one of classical
belief-revision policies. The latter are memory-free, can account by default only
for one step of revision. Hence, each time they take only one piece of incoming
information. The above definition makes our methods dependent on a finite history
of events, but obviously it accounts for the classical policies as a special case.

As in the case of learning methods there are some basic requirements that belief-
revision methods might be expected to fulfill. This time most of the properties
will be defined in terms of belief operator B, as given in Section 4.1. First we give
two versions of data-retention, the property that states that beliefs are expected
to reflect the incoming information.

Definition 4.1.12. A belief-revision method is weakly data-retentive if after the
revision the most recent piece of data is believed, i.e., for σ = (σ1, . . . , σn), we
have

if p ∈ σn then (Sσ,≤σ) |= Bp.

Definition 4.1.13. A belief-revision method is strongly data-retentive if all the
observed data are believed, i.e., if σ = (σ1, . . . , σn) then for every 1 ≤ i ≤ n:

if p ∈ σi then (Sσ,≤σ) |= Bp.

In the case of belief-revision methods we can define two types of conservatism.
Unlike general learning methods, belief-revision methods output the whole revised
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plausibility state. So, conservatism can take a weak form in which the belief itself
does not change if the new piece of data has already been believed, or a strong
form in which the whole plausibility state does not change under new information,
that has been already believed.

Definition 4.1.14. A belief-revision method is weakly conservative if it keeps
the same belief when it is confirmed by the new information, i.e., for every finite
ρ ⊆ Prop such that (Sσ,≤σ) |= B(

∧
ρ) and for every formula θ, we have that:

(Sσ,≤σ) |= Bθ iff (Sσ∗ρ,≤σ∗ρ) |= Bθ.

Definition 4.1.15. A belief-revision method is strongly conservative if it does
not change the plausibility state when the new data has already been believed, i.e.,
for every finite ρ ⊆ Prop s.t. (Sσ,≤σ) |= B(

∧
ρ), we have

(Sσ,≤σ) = (Sσ∗ρ,≤σ∗ρ).

We define the notion of data-drivenness as in the case of learning methods:

Definition 4.1.16. A belief-revision method is data-driven if it is both weakly
data-retentive and weakly conservative.

As mentioned before, belief-revision methods work on whole plausibility states.
This allows a refined notion of keeping track of past events. History-independent
belief-revision methods do not distinguish between the same plausibility states
that have different pasts.

Definition 4.1.17. A belief-revision method is history-independent if its output
at any stage depends only on the previous output and the most recently observed
data, i.e., for every finite ρ ⊆ Prop and all finite data sequences σ, π, we have

if (Sσ,≤σ) = (Sπ,≤π) then (Sσ∗ρ,≤σ∗ρ) = (Sπ∗ρ,≤π∗ρ).

4.2 Iterated DEL-AGM Belief Revision

All revision methods satisfying the AGM postulates are data-driven. This follows
from the second AGM postulate: If S is a belief state and S ∗ ϕ represents the
set of beliefs resulting from revising S with new belief ϕ, then ϕ belongs to S ∗ ϕ
(Alchourrón et al., 1985). However, as we will see below, AGM methods are
not necessarily strongly data-retentive, nor strongly conservative. Below we will
consider three basic qualitative belief-revision methods that met considerable
attention within dynamic epistemic logic research: conditioning (update), lexico-
graphic revision (radical upgrade) and minimal revision (conservative upgrade) (for
details see Chapter 2). We will investigate the properties of homogeneous iterated
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revision, i.e., sequences of revisions governed by one particular belief-revision
policy.1

4.2.1 Conditioning

We want to focus now on the conditioning revision method, which corresponds
to update in dynamic epistemic logic (see Van Benthem, 2007, and Chapter 2).
To briefly recall the notion, update operates by deleting those worlds that do
not satisfy all the new data. The minimal requirement for rational application of
update is that the incoming information is truthful. We redefine the notion of
update for our epistemic states in the following way.

Definition 4.2.1. Conditioning is a belief-revision method Cond that takes an
epistemic state S together with a prior plausibility assignment ≤S, i.e., a plausi-
bility state, and a finite set of propositions ρ and outputs a new plausibility state
in the following way:

Cond((S,≤S), ρ) = (Sρ,≤ρS),

where Sρ = {s ∈ S|s |=
∧
ρ}, and ≤ρS = ≤S�Sρ.

The conditioning revision method is obviously weakly data-retentive. Moreover,
one can say that it treats the incoming information very seriously—it deletes
all worlds inconsistent with it. The deletion cannot be reversed—in this sense
conditioning is the ultimate way to memorize things. Below we prove that
conditioning is strongly data-retentive.

Proposition 4.2.2. Conditioning revision method on (S,≤S) is strongly data-
retentive.

Proof. Let us take σ = (σ1, . . . , σn) and assume that Cond((S,≤), σ) = (Sσ,≤σ).
We have to show that the conditioning revision method Cond is strongly data-
retentive, i.e., if , for every 1 ≤ i ≤ n:

if p ∈ σi then (Sσ,≤σ) |= Bp.

Each time the new information σi comes in all worlds that do not satisfy it are
eliminated, therefore Sσ = ‖

∧⋃
σ‖. Hence for every world s ∈ Sσ, we have that

s |=
∧⋃

σ. So in the resulting model every proposition that ever occurred in σ is
believed.

Conditioning, being an AGM revision method, is weakly conservative. We will
show that it is not strongly conservative.

1An alternative, complementary view is to alternate belief-revision policies depending on the
status of the incoming information. In such a case the level of doubt (or conservatism) with
which one can accept the incoming data depends on the level of the reliability of the incoming
information (see Baltag & Smets, 2008a; Van Benthem, 2007). We will not be concerned with
such heterogeneous policies, but we view them as an interesting topic for future work.
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Proposition 4.2.3. Conditioning is not strongly conservative.

Proof. Let us take a sequence of data σ and assume that Cond((S,≤), σ) =
(Sσ,≤σ). We have to show that the conditioning revision method Cond is not
strongly conservative, i.e., it is not necessarily the case that it keeps the same
plausibility state when the new data is already believed. In other words for every
finite ρ ⊆ Prop such that (Sσ,≤σ) |= B(

∧
ρ), we have

(Sσ,≤σ) = (Sσ∗ρ,≤σ∗ρ).

Let us consider the following example. Assume that Sσ = {{p, q}, {p}},
ρ = {q}, and the plausibility gives the following order: {p, q}≤σ{p}. Then clearly

(Sσ,≤σ) |= B(
∧

ρ).

However, after receiving ρ, the revision method Cond will eliminate world {p} and
therefore:

(Sσ,≤σ) 6= (Sσ∗ρ,≤σ∗ρ).

We have shown that apart from being data-driven (weakly data-retentive
and weakly conservative) conditioning is strongly data-retentive but not strongly
conservative.

Conditioning on Epistemic States Conditioning can change the underlying
plausibility order only by deletion of possible worlds. If update is performed on
epistemic states that lack plausibility structure, in some cases, while the range of
uncertainty of the agent shrinks upon new data, the emergence of full certainty
can occur. Conditioning can be considered successful if the actual guess is finitely
identified (see Chapter 5 and Dégremont & Gierasimczuk, 2009). In this case
the iteration on any data stream consistent with any world s allows eliminating
uncertainty in a finite number of steps.

4.2.2 Lexicographic Revision

Lexicographic revision corresponds to radical upgrade in dynamic epistemic logic.
When facing new information, it does not delete states, it just makes all the worlds
satisfying the new piece of data more plausible than all the worlds that do not
satisfy it and within the two parts, the old order is kept.

Definition 4.2.4. Lexicographic revision is a belief-revision method Lex that
takes an epistemic state S together with a prior plausibility assignment ≤S, i.e., a
plausibility state, and a finite set of propositions ρ and outputs a new plausibility
state in the following way:

Lex((S,≤S), ρ) = (S,≤ρS),
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where for all t, w ∈ S:

t ≤ρS w iff (t ≤ρS w or t ≤ρ̄S w or (t ∈ ‖
∧

ρ‖ ∧ w ∈ ‖¬
∧

ρ‖)),

where: ≤ρS = ≤S�‖
∧
ρ‖, and ≤ρ̄S = ≤S�‖¬

∧
ρ‖.

Lexicographic revision is not strongly data-retentive on arbitrary sequences
of data. However, if the data sequence is sound with respect to a world in the
epistemic state, strong data retention holds. Moreover, this type of revision is not
strongly conservative. Let us go through the arguments for each case.

Proposition 4.2.5. Lexicographic revision is not strongly data-retentive on arbi-
trary data streams.

Proof. Let us take a finite sequence of data σ = (σ1, . . . , σn) and assume that
Lex((S,≤), σ) = (S,≤σ). We have to show that the lexicographic revision method
is not strongly data-retentive, i.e. it is not the case that for every 1 ≤ i ≤ n:

if p ∈ σi then (S,≤σ) |= Bp.

Let us take S = {{p}, {q}}, σ = ({p}, {q}), and assume any initial ordering on
S, e.g., {p} ≤ {q}. First σ1 = {p} comes in, and p starts to be believed. After
receiving σ2 = {q} the most plausible state becomes {q}, so p is no longer believed,
i.e., ¬B

∧
σ1.

Observe that σ in the above proof is not sound and complete with respect
to any possible world in S. Therefore, in the learning-theoretic setting that we
described in Chapter 2, σ cannot possibly appear in the first place. In this sense
the lexicographic revision is especially well suited to learning and scientific inquiry—
it’s behaviour improves on data streams that are assumed to be consistent with
reality. Let us see that it is so.

Proposition 4.2.6. Lexicographic revision method on (S,≤S) is strongly data-
retentive on data sequences that are sound with respect to some s ∈ S.

Proof. We have to show that the lexicographic revision method Lex is strongly
data-retentive on sound data sequences. Let us take a plausibility state (S,≤S),
s ∈ S and σ—a data sequence that is sound with respect to s, i.e., set(σ) ⊆ s.
After reading σ, for all the worlds t that are most plausible with respect to ≤S in
S it is the case that ‖

∧⋃
σ‖ ⊆ t, t |= B

∧⋃
σ. It is so because by assumption

there is at least one such world, s.

While adhering to the desired form of strong data-retention, lexicographic
revision is not strongly conservative.
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Proposition 4.2.7. The lexicographic revision is not strongly conservative.

Proof. Let us take a sequence of data σ and assume that Lex((S,≤), σ) = (S,≤σ).
We have to show that the lexicographic revision method Lex is not strongly
conservative, i.e., it is not necessarily the case that it keeps the same plausibility
state when the new data is already believed. Formally, for every finite ρ ⊆ Prop
such that (Sσ,≤σ) |= B(

∧
ρ), we have

(S,≤σ) = (S,≤σ∗ρ).

Let us consider the following example. Assume that S = {{p, q}, {p}, {q}},
ρ = {q}, and the plausibility gives the following order: {p, q} ≤σ {p} ≤σ {q}.
Then clearly (S,≤σ) |= B(

∧
ρ). However, after getting ρ, the revision method

will put world {q} to be more plausible than {p}, and therefore

(S,≤σ) 6= (S,≤σ∗ρ).

Summary Lexicographic revision is strongly data-retentive on streams that are
sound with respect to some possible world. On the other hand, it is not strongly
conservative.

4.2.3 Minimal Revision

The minimal revision method corresponds to conservative upgrade in dynamic
epistemic logic (see Van Benthem, 2007). The most plausible worlds satisfying
the new data become the most plausible overall. In the remaining part the old
order is kept.

Definition 4.2.8. Minimal revision is a belief-revision method Mini that takes
an epistemic state S together with a prior plausibility assignment ≤S (i.e., a
plausibility state) and a finite set of propositions ρ and outputs a new plausibility
state in the following way:

Mini((S,≤S), ρ) = (S,≤ρS),

where for all t, w ∈ S:

t ≤ρS w iff t ≤restρ
S w or t ∈ min≤S(S,≤S)

where: ≤restρ
S = ≤S�{t ∈ S | t /∈ min≤S‖

∧
ρ‖}.

The minimal revision method is not strongly data-retentive (not even on sound
data streams). But, on the other hand, it is strongly conservative.
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Proposition 4.2.9. Minimal revision on (S,≤S) is not strongly data-retentive
on all data sequences that are sound with respect to some s ∈ S.

Proof. Let us take a sequence of data σ = (σ1, . . . , σn) and assume that
Mini((S,≤), σ) = (S,≤σ). We have to show that Mini is not strongly data-
retentive, i.e., is not the case that for every 1 ≤ i ≤ n:

if p ∈ σi then (S,≤σ) |= Bp.

Let us take S = {{p}, {q}, {p, q}}, σ = ({p}, {q}) a data sequence consistent with
world {p, q}, and assume that the initial ordering on S is {q} ≤ {p} ≤ {p, q}. After
receiving σ1 = {p} the plausibility ordering becomes {p} ≤σ1 {q} ≤σ1 {p, q}. Then
σ2 = {q} comes in—now our method gives the ordering {q} ≤(σ1,σ2) {p} ≤(σ1,σ2)

{p, q}. So p is no longer believed although it was included in σ1, i.e., after the
second piece of data ¬B(

∧
σ1).

Proposition 4.2.10. Minimal revision is strongly conservative.

Proof. Let us take a sequence of data σ and assume that Mini((S,≤), σ) = (S,≤σ).
We have to show that the minimal revision method is strongly conservative, i.e., it
keeps the same plausibility state when the new data is already believed. Formally,
for every finite ρ ⊆ Prop such that (S,≤σ) |= B(

∧
ρ), we have

(S,≤σ) = (S,≤σ∗ρ).

Let us take ρ ⊆ Prop such that (S,≤σ) |= B(
∧
ρ), we have to show that

(S,≤σ) = (S,≤σ∗ρ).

Let us assume that (S,≤σ) 6= (S,≤σ∗ρ). This means that after receiving ρ the
plausibility order has been rearranged. By the definition of Mini, this could
happen only in the case when among the most plausible in (S,≤σ) there was no
world t such that t ∈ ‖ρ‖. But then also (S,≤σ) 6|= B(

∧
ρ). Contradiction.

The precise relation between the minimal revision method and the notion of
conservatism is an interesting subject of further investigation. Our definition of
strong conservatism indicates that minimal revision is the only strongly conserva-
tive belief-revision method. Hence, the concepts of minimal revision and strongly
conservative revision are equivalent.

4.3 Learning Methods

In learning theory the learner is taken to be a function that on each finite
sequence of data outputs a conjecture—a hypothesis from the initially given set
of possibilities. We will follow this intuition here—our learning is performed by a
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function that, given some initial uncertainty range and a data sequence outputs
a belief set. The latter contains worlds that are in some way consistent with
the received sequence. In other words, a learning method is a way of converting
any epistemic state, S, into a belief set S0 ⊆ S on the basis of any given data
sequence.2

Definition 4.3.1. A learning method is a function L that assigns some belief set
L(S, (σ1, . . . , σn)) ⊆ S to an epistemic state S (of any epistemic model) and a
data sequence σ = (σ1, . . . , σn) (of any finite length n).

In contrast to our setting, in learning theory the learning functions are assumed
to be deterministic, i.e., L(S, σ1, . . . , σn) ⊆ S is either a singleton {h} (for some
h ∈ S, called the current hypothesis) or ∅ (when no conjecture is made).

In principle learning methods can be completely arbitrary. However, (to keep
learners reasonable) we might well want them to satisfy certain requirements. Let
us now define and briefly describe such basic properties of learning methods.

The first feature of learning methods is their data-retention. It formalizes
the intuition that new beliefs should be consistent with the information received.
Minimal requirement of this kind is that the belief set accounts for the most recent
piece of data.

Definition 4.3.2. A learning method is weakly data-retentive if for all data
sequences σ = (σ1, . . . , σn), we have that if L(S, σ) 6= ∅ then:

σn ⊆
⋂

L(S, σ).

The maximal requirement of data-retention is that the current conjecture
always accounts for all data that have been encountered.

Definition 4.3.3. A learning method is strongly data-retentive if for all data
sequences σ = (σ1, . . . , σn) and for every 1 ≤ i ≤ n, we have that if L(S, σ) 6= ∅,
then:

σi ⊆
⋂

L(S, σ).

In formal learning theory the corresponding property is known under the name
of consistent learning.

Another quite intuitive assumption is that agents change their beliefs only
when the observed information clearly contradicts their current beliefs. In other
words, unless the agent is forced to, he does not change his mind.

2Learning functions output ‘absolute beliefs’. In this respect they seem to be closer to the
AGM-style belief revision than to DEL operations which account for ‘conditional beliefs’. In
fact, this analogy is not full, because learning functions are allowed to base their conjectures on
whole sequences of events.
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Definition 4.3.4. A learning method is weakly conservative if for all data se-
quences σ = (σ1, . . . , σn) and a finite ρ ⊆ Prop, we have:

if ρ ⊆
⋂

L(S, σ) then L(S, σ) = L(S, σ ∗ ρ).

The analogous concepts: conservatism, in learning theory has been shown to
restrict the class of languages identifiable in the limit, as has been consistency
(see, e.g., Jain et al., 1999). We will not go into details of these arguments here.
Let us just mention that our concept of learning method is different from that
of the learning function in formal learning theory. These are assumed to output
integers that are indices of sets in the initial class. Our learning methods are
working directly on sets and output the entire set corresponding to current beliefs.
In this respect our approach is more ‘semantic’ and accordingly learning methods
may turn out to be more powerful.

For brevity’s sake we will sometimes combine the two weak conditions of
conservatism and data-retention together under the name of data-drivenness.

Definition 4.3.5. A learning method is data-driven if it is both weakly data-
retentive and weakly conservative.

Last but not least, an important aspect of learning methods is their memory
concerning past conjectures. Below we define the limit case of a memory-free
learning method.

Definition 4.3.6. A learning method is memory-free if, at each stage, the new
belief set depends only on the previous belief set and the new data, i.e., for any
finite ρ ⊆ Prop:

if L(S, σ) = L(S ′, σ′) then L(S, σ ∗ ρ) = L(S ′, σ′ ∗ ρ).

A condition analogous to this in Definition 4.3.6 has been considered in formal
learning theory and is known under the name of memory limitations (see, e.g.,
Jain et al., 1999).

4.4 Belief-Revision-Based Learning Methods

Finally, we are ready to put all the pieces together and describe learning that is
based on belief-revision methods. We build a learning method from a belief-revision
strategy in the following way. We take an epistemic state, put some plausibility
order on it, and simulate a certain belief-revision method while receiving new
information. The answer of the learning method each time consists of the most
plausible worlds in the plausibility state. Such a learning method still outputs just
the belief states but it bases its conjectures on the constructive work executed in
the background by the belief-revision method.
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Definition 4.4.1. A belief-revision method R, together with a prior plausibility
assignment S 7→ ≤S, generates a learning method LR, called a belief-revision-based
learning method, and given by:

LR(S, σ) := min≤SR(S,≤S, σ),

where min≤′(S
′,≤′) is the set of all the least elements of S ′ with respect to ≤′ (if

such least elements exist) or ∅ (otherwise).

Now, an interesting set of questions arises. Is it the case that data-retention
and conservatism of belief-revision method is inherited by the corresponding
belief-revision-based learning methods? Do history-independent belief-revision
methods generate memory-free learning methods? Below we list and discuss several
dependencies between belief-revision methods and learning methods generated
from them.

Proposition 4.4.2. If a belief-revision method R is weakly data-retentive then
the generated learning method LR is weakly data-retentive.

Proof. Let us take a belief-revision method R and some epistemic state together
with a prior plausibility assignment (S,≤S). Assume that R is weakly data-
retentive, i.e., if σ = (σ1, . . . , σn) is a data sequence then:

∀p ∈ σn (Sσ,≤σS) |= Bp.

We need to show that if LR(S, σ) 6= ∅, then σn ⊆
⋂
LR(S, σ). Let us then assume

that LR(S, σ) 6= ∅, i.e., there is a ≤σS minimal element in Sσ. Then in every world
minimal with respect to ≤S every p from σn holds:

∀p ∈ σn min≤σS(Sσ,≤σS) ⊆ ‖p‖,

where ‖p‖ stands for the set of possible worlds that include p. Therefore, in every
minimal world the conjunction of the σn holds:

min≤σS(Sσ,≤σS) ⊆ ‖
∧

σn‖,

or equivalently:

σn ⊆
⋂

min≤σS(Sσ,≤σS).

Since (Sσ,≤σS) = R((S,≤S), σ) = LR(S, σ), we have that

σn ⊆
⋂

LR(S, σ).

The next two propositions are proved in a similar way.
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Proposition 4.4.3. If R is data-retentive then the induced learning method LR
is data-retentive.

Proposition 4.4.4. If a belief-revision method R is weakly conservative then the
induced learning method LR is weakly conservative.

It remains to show how belief-revision and learning methods relate to each
other with respect to their memory limitations.

Proposition 4.4.5. A learning method generated from a history-independent
belief-revision method does not have to be memory-free.

Proof. We prove this proposition by showing an example—a belief-revision method
that is history-independent but the learning method that it induces is not memory-
free. Let R be the lexicographic revision method (that corresponds to lexicographic
upgrade in DEL, see Chapter 2), all the worlds satisfying the new data become
more plausible than all the worlds not satisfying them; and within the two zones,
the old order is kept. R is clearly history-independent. Each time the revision
takes into account only the last output in the form of an epistemic plausibility state
and the new incoming information. To see that LR is not memory-free consider
the following two plausibility orders on S = S ′ = {{p}, {q}, {p, q}}. Assume that
for some σ and σ′:

1. R((S,≤S), σ) gives the plausibility order: {p} <S {p, q} <S {q};

2. R((S ′,≤′S), σ′) gives the plausibility order: {p} <S′ {q} <S′ {p, q}.

It is easy to observe that LR(S, σ) = LR(S ′, σ′). Assume now that the next
observation ρ = {q}. Then clearly LR(S, σ ∗ρ) = {p, q}, while LR(S ′, σ′ ∗ρ) = {q}.
Therefore, for the belief-revision method R there is a data sequence ρ such that:

LR(S, σ) = LR(S ′, σ′), but LR(S, σ ∗ ρ) 6= LR(S ′, σ′ ∗ ρ).

Summary Let us briefly summarize the results we have obtained so far. Data-
retention and weak conservatism are preserved when a learning method is generated
from a belief-revision method. However history-free belief-revision methods are
still able to remember more than just the last conjecture of the generated learning
method. This is so, because they ‘keep’ the whole plausibility order for ‘further
use’.
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4.5 Convergence

What does it mean for a learning method to be reliable with respect to the initial
epistemic state S? It means that it is possible to rely upon it to find the real
world in finite time, no matter what the real world is, as long as it belongs to
the given initial epistemic state S and as long as the data stream is sound and
complete (for a discussion of reliability in belief-revision see Kelly et al., 1995). In
this section we investigate reliability with respect to convergence to the correct
belief. The expected result is not knowledge understood as full certainty, but
rather a kind of belief that is guaranteed to persist under true information. In this
setting, an agent can be right in believing something but he might not know it.

Identification in the limit guarantees the convergence to the right hypothesis,
i.e., at a finite stage the answers of the learning method stabilize on the correct
conjecture.3

Definition 4.5.1. An epistemic state S is identified in the limit on positive data
by learning method L if and only if for every world s ∈ S and every sound and
complete positive data stream for s, there exists a finite stage after which L outputs
the singleton {s} from then on.4

In general we can attribute identifiability to the epistemic states by requiring
that there is a learning method that identifies the state.

Definition 4.5.2. An epistemic state is identifiable in the limit (resp. finitely
identifiable) on positive data if there exists a learning method that can identify it
in the limit (resp. finitely identify it) on positive data.

Particular learning methods differ in their power. The most powerful among
them are those that are universal, i.e., they can identify in the limit every class
identifiable in the limit.

Definition 4.5.3. A learning method L is universal on positive data if and only if
it can identify in the limit on positive data every epistemic state that is identifiable
in the limit.

We are especially interested in learning methods that are generated from
belief-revision policies. For brevity’s sake we will use the notion of identification in
the limit while talking about belief-revision policies. By a belief-revision method
identifying S in the limit, we mean that the belief-revision method together with
some prior plausibility assignment generates a learning method that identifies S
in the limit (as given in Definition 4.5.1).

3In this chapter we will focus on identification in the limit. Finite identification is investigated
in the context of epistemic logic in Chapter 5.

4In terms of belief, it means that the agent’s conjectures stabilize to the complete true belief
about the actual world.
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Definition 4.5.4. An epistemic state S is identified in the limit on positive data
by a belief-revision method R if there exists a prior plausibility assignment S 7→ ≤S
such that the generated belief-revision-based learning method LR identifies S in
the limit on positive data.

The above definition requires the existence of an appropriate initial plausibility
assignment. In principle it can be a completely arbitrary preorder. However, we
might want this prior plausibility assignment to satisfy certain assumptions of
cognitive realism or rationality. The properties that are often required of such
priors are well-foundedness and totality. Well-foundedness assures that a minimal
state is always exists and it is possible to point to it as to the current belief. Totality
guarantees that whenever two possibilities are considered, they are comparable
with respect to the plausibility assignment. With respect to identifiability in the
limit one can accordingly demand a prior plausibility assignment to satisfy those
as standard assumptions of preference relations in doxastic epistemic logic (see,
e.g., Dégremont, 2010).

Definition 4.5.5. An epistemic state S is standardly identified in the limit on
positive data by a belief-revision method R if there exists a (total) well-founded
prior plausibility assignment S 7→ ≤S such that the induced belief-revision-based
learning method L identifies S in the limit on positive data.

We define the analogous notion of universality for standard identifiability.

Definition 4.5.6. A revision method is standardly universal on positive data if
it can standardly identify in the limit on positive data every epistemic state that
is identifiable.

Our aim now is to show that some of the DEL-AGM revision methods generate
a universal learning methods. The main technical difficulty of this part is the
construction of the appropriate prior plausibility order. To define it we will use
the concepts of locking sequences introduced by Blum & Blum (1975) and finite
tell-tale sets proposed by Angluin (1980). For the latter we will use the simple
non-computable version. We will refine the classical notion of finite tell-tales
and use it in the construction of the suitable prior plausibility assignment that,
together with conditioning and lexicographic revision, will generate universal
learning method.

The first observation is that if convergence occurs, then there is a finite sequence
of data that ‘locks’ the corresponding sequence of conjectures on a correct answer.
This finite sequence is called a ‘locking sequence’.

Definition 4.5.7 (Blum & Blum 1975). Let an epistemic state S, a possible world
s ∈ S, a learning method L and a finite data sequence of propositions, σ, be given.
The sequence σ is called a locking sequence for s and L if:

1. set(σ) ⊆ s;
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2. L(S, σ) = {s};

3. for any data sequence α, if set(α) ⊆ s, then L(S, σ) = L(S, σ ∗ α).

Lemma 4.5.8 (Blum & Blum 1975). If a learning method L identifies possible
world s in the limit then there exists a locking sequence for L on s.

The characterization of identifiability in the limit (see Theorem 2.1.14) can
be generalized to account for arbitrary classes, by dropping the assumption
of computability. It requires the existence of finite sets that allow drawing a
conclusion without the risk of overgeneralization.

Lemma 4.5.9 (Angluin 1980). Let S be an epistemic state over a set Prop of
atomic sentences, such that Prop and S are at most countable. If S is identifiable
in the limit on positive data, then there exists a total map D : S → P<ω(Prop),
given by s 7→ Ds, such that Ds is a finite tell-tale for s, i.e.,

1. Ds is finite,

2. Ds ⊆ s,

3. if Ds ⊆ t ⊆ s then t = s.

Proof. Let S be an epistemic state over a set Prop of atomic sentences, such that
Prop and S are at most countable. Let us also assume that S is identifiable in
the limit on positive data by the learning method L, i.e., for every world s ∈ S
and every sound and complete positive data stream for s, there exists a finite
stage after which L outputs the singleton {s} from then on. By Lemma 4.5.8,
for every s ∈ S we can take a locking sequence σs for L on s. For any s ∈ S we
define Ds := set(σs).

1. Ds is finite because locking sequences are finite.

2. Ds ⊆ s, because set(σs) ⊆ S.

3. if Ds ⊆ t ⊆ s then t = s. Assume that there are s, t ∈ S, such that s 6= t
and Ds ⊆ t ⊆ s. Let us take a positive sound and complete data stream ε
for t, such that for some n ∈ N, ε�n = σs. Because σs is a locking sequence
for L on s and set(ε) = t ⊆ s, L converges to s on ε. Therefore, L does not
identify t, a state from S. Contradiction.

This concludes the proof.

We will use the notion of finite ‘tell-tale’ to construct an ordering of S. The
aim is to find a way of assigning the prior plausibility order that allows reliable
belief revision. We will base the construction on finite tell-tales, but we will
introduce one additional condition (see point 4 of Definition 4.5.10, below).
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Definition 4.5.10. Let S be a countable epistemic state with an injective map
i : S → N, and D′ be a total map such that D′ : S → P<ω(Prop), given by
s 7→ D′s having the following properties:

1. D′s is finite,

2. D′s ⊆ s,

3. if D′s ⊆ t ⊆ s then t = s,

4. if D′s ⊆ t but s 6⊆ t then i(s) < i(t).

We call D′ an ordering tell-tale map, and D′s an ordering tell-tale set of s.

Definition 4.5.11. For s, t ∈ S, we put

s �D′ t if and only if D′s ⊆ t.

We take ≤D′ to be the transitive closure of the relation �D′.

Lemma 4.5.12. For any identifiable epistemic state S and any ordering tell-
tale map D′, the relation ≤D′ is an order, i.e., ≤D′ is reflexive, transitive and
antisymmetric.5

Before we give the proof let us introduce the notion of a proper cycle in ≤D′ .

Definition 4.5.13. A proper cycle in ≤D′ is a sequence of worlds s1, . . . , sn, with
n ≥ 2, and such that:

1. D′si is included in si+1 (for all i = 1, . . . , n− 1).

2. s1 = sn, but

3. s1 6= s2.

Proof. The fact that ≤D′ is a preorder is trivial: reflexivity follows from the fact
that D′s is always included in s, and transitivity is imposed by construction (by
taking the transitive closure). We need to prove that ≤D′ is antisymmetric. In
order to do that we will show (by induction on n) that ≤D′ does not contain
proper cycles of any length n ≥ 2.

1. For the initial step (n = 2): Suppose we have a proper cycle of length 2. As
we saw, this means that there exist two states s1, s2 such that s1 6= s2, D′s1
is included in s2 and D′s2 is included in s1. There are three cases:

5We use D′, to distinguish from the original tell-tale function D (satisfying only the conditions
of Angluin’s Theorem).



4.5. Convergence 63

Case 1: s1 is included in s2. In this case, D′s2 is included in s1, and s1 is included
in s2, so (by Condition 3 of Definition 4.5.10), we have that s1 = s2.
Contradiction.

Case 2: s2 is included in s1. This case is similar: D′s1 is included in s2 and s2

is included in s1, so (by Condition 3 of Definition 4.5.10), we have that
s2 = s1. Contradiction.

Case 3: s1 is not included in s2, and s2 is not included in s1. In this case, from
the assumption that D′s1 is included in s2, and that s1 is not included in
s2, we can infer (by Condition 4 of Definition 4.5.10), that i(s1) < i(s2).
But, in a completely similar manner (from D′s2 included in s1, and s2

not included in s1), we can also infer that i(s2) < i(s1). Putting these
together, we get i(s1) < i(s2) < i(s1). Contradiction.

2. For the inductive step (n+ 1): Suppose s1, s2, ..., sn+1 is a proper cycle of
length n+ 1. We consider two cases:

Case 1: There exists k with 1 ≤ k < n such that sk is included in sk+1. If 1 < k,
then it is easy to see that the sequence s1, . . . , sk−1, sk+1, . . . (obtained
by deleting sk from the above proper cycle of length n + 1) is also a
proper cycle, but of smaller length (n). Contradiction. Similarly, if
k = 1, it is easy to see that the sequence s1, s3, ..., sn+1 (obtained by
deleting s2) is a proper cycle of smaller length (n). Contradiction.

Case 2: sk is not included in sk+1 for any 1 ≤ k < n. In this case, we have
that for all 1 ≤ k < n, D′sk is included in sk+1 but sk is not included
in sk+1. By Condition 4 of Definition 4.5.10, it follows that we have
isk < isk+1

, for all k = 1, . . . , n. By the transitivity of ≤D′ , it follows
that is1 < isn+1 . But by Condition 2 of Definition 4.5.10, s1 = sn+1,
hence is1 > isn+1 . Contradiction.

We will now show that ≤D′ , used by the conditioning revision method, guar-
antees convergence to the right belief whenever the underlaying epistemic state is
identifiable in the limit.

Theorem 4.5.14. The conditioning-based learning method is universal on positive
data.

Proof. We have to show that an epistemic model S is identifiable in the limit iff S
is identifiable in the limit by the conditioning-based learning method. Obviously,
if S is identifiable in the limit by the conditioning-based learning method, then S
is identifiable in the limit. We will therefore focus on the other direction, i.e., we
will show that if S is identifiable in the limit by any learning method, then it is
identifiable in the limit by the conditioning-based learning method.
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First let us assume that S, an epistemic state, is identifiable in the limit and
hence it is at most countable. Let us then take an injective map i : S → N. By
Lemma 4.5.9 we can assume the map D that gives tell-tales for any s ∈ S. On
the basis of D we will now construct a new map D′ : S → P≤ω(Prop). We will
proceed step by step according to the enumeration of S given by i.

1. For s1 we set D′(s1) := D(s1).

2. For sn: For every k < n such that Dsn ⊆ sk and sn 6⊆ sk, we choose an
atomic proposition pk such that pk ∈ sn and pk 6∈ sk. We define Rest in the
following way.

Rest := {pk | k < n & pk ∈ sn & pk 6∈ sk & Dsn ⊆ sk & sn 6⊆ sk}.

Then, we set D′sn = Dsn ∪ Rest .

We have to check if D′ satisfies conditions of Definition 4.5.10.

1. D′s is finite, because Ds and Rest are both finite.

2. D′s ⊆ s, because Ds and Rest are subsets of s.

3. If D′s ⊆ t ⊆ s then t = s, because then Ds ⊆ D′s ⊆ t ⊆ s, and hence, by the
definition the finite tell-tale set t = s.

What remains is to check the condition 4: If D′(s) ⊆ t and s * t then i(s) < i(t).
Let us assume the contrary: D′(s) ⊆ t and s * t and i(t) ≤ i(s). There are two
possibilities:

1. i(t) = i(s), but then s = t and hence s ⊆ t. Contradiction.

2. i(t) < i(s). Then, there is a proposition p ∈ D′(s) such that p ∈ s and
p /∈ t. Therefore, by the inductive step of the construction of D′, D′(s) * t.
Contradiction.

We now have that D′ satisfies all conditions of Definition 4.5.10, and therefore
it is an ordering tell-tale map. Hence, by Lemma 4.5.12, the corresponding ≤D′ is
an order.

It remains to show that S is identifiable in the limit by the learning method
generated from the conditioning belief-revision method and the prior plausibility
assignment ≤D′ . Let us then take any s ∈ S and the corresponding D′(s). Since
D′(s) ⊆ s for every ε—a sound and complete positive data stream for s, there
is n ∈ N for which D′(s) ⊆ set(ε�n). Our aim is now to demonstrate that after
receiving the elements of ε�n, s is the minimal element in Sε�n with respect to
≤D′ . Let us assume for contradiction that it is not, i.e., there is t ∈ Sε�n such that
t 6= s and t ≤D′ s. Since t ∈ Sε�n, we get that D′(s) ⊆ t, but then, by Definition
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4.5.10, s ≤D′ t. And because by Lemma 4.5.12, ≤D′ is antisymmetric we get that
s = t. Contradiction.

To see that the conditioning process stabilizes on {s}, it is enough to observe
that ε is sound with respect to s, and therefore no further information from ε
can eliminate s (because conditioning is weakly conservative). So for any k > n,
min≤D′Cond((S,≤′D), ε�k) = {s}.

Theorem 4.5.15. The lexicographic belief-revision method is universal on positive
data streams.

The proof is analogous to the proof of Theorem 4.5.14. As far as simple beliefs
are concerned, radical upgrades with true information do exactly what updates do.
The only difference is that the rest of the doxastic structure might not stabilize,
but only the minimal elements stabilize (on worlds indistinguishable from the real
one).

The preorder defined in the proof of Theorem 4.5.14 is not necessarily well-
founded. It is impossible to improve on this without losing the universality
property. This is why as background setting we need generalized plausibility
models, in which the plausibility is a preorder, without assuming well-foundedness.
Belief can still be defined as ‘truth in all the states that are plausible enough’ (this
requires three quantifiers: For every state s there exists some state t ≤ s such
that ϕ is true in all states w ≤ t). This is equivalent to the standard definition in
the case that there exist minimal states (i.e., states ≤ than all others).

Let us now turn to the negative result concerning the minimal revision method.

Proposition 4.5.16. Minimal revision is not universal.

Proof. Let us give a counter-example, an epistemic state that is identifiable in the
limit, but is not identifiable by the minimal revision method:

S = {{p}, {q}, {p, q}}.

The epistemic state S is identifiable in the limit by the conditioning revision
method: just assume the ordering {p} < {q} < {p, q}. However, there is no
ordering that will allow identification in the limit of S by the minimal revision
method. If {p, q} occurs in the ordering before {p} (or before {q}), then the
minimal revision method fails to identify {p} ({q}, respectively). If both {p}
and {q} precede {p, q} in the ordering then the minimal revision method fails to
identify {p, q} on any data stream consisting of singletons of propositions from
{p, q}. On all such data streams for {p, q} the minimal state will alternate between
{p} and {q}, or stabilize on one of them. The last case is that at least one of
{p} and {q} is equiplausibile to {p, q}. In such case {p, q} is not identifiable
because for any single proposition from {p, q} there is more than one possible
world consistent with it.
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Proposition 4.5.17. There is no standardly universal belief-revision method.

Proof. There is an epistemic state S that is identifiable in the limit by a learning
method, but is not standardly identified in the limit by any belief-revision method,
i.e., there is no belief-revision method that would, together with a well-founded
order ≤ generate a learning method that identifies S in the limit. The following
epistemic state constitutes such counter-example:

S = {sn = {pk | k ≥ n} | n ∈ N}.

S is identifiable in the limit by learning method L, that is defined in the following
way:

L(S, σ) = sn iff n is the smallest such that set(σ) ⊆ sn.

Moreover, S is identifiable in the limit by a revision-based learning method.
We take the conditioning revision method and ≤ ⊆ S × S defined in the following
way: For any sn, sm ∈ S, sn ≤ sm iff n ≥ m. It is easy to observe that ≤ is not
well-founded.

Let us now assume that S is standardly identifiable in the limit, i.e., there is a
belief-revision method R and a well-founded order ≤ on S, such that the learning
method generated from R and ≤ identifies S in the limit. If ≤ is well-founded we
can choose the ≤-minimal element. Let as assume that it is sk for some k ∈ N.
Obviously, for all n > k, sn ⊆ sk, in fact there are infinitely many n ∈ N such that
sk ≤ sn and sn ⊆ sk. Therefore, all positive, sound and complete data steams for
such sn are also sound with respect to sk. If we accept the minimal assumption
of data-drivenness of belief-revision methods, we can easily see that R will not
change the ≤-minimal state from sk to any of sn, for any sound and complete
data streams for sn. Therefore R fails to identify in the limit sn, for all n > k.

Summary In this section we considered a notion of reliability of a belief-revision
method. We used the concept of identifiability in the limit to define success of an
iterated belief-revision process. We have shown that some belief-revision methods
are universal, i.e., they identify in the limit all epistemic states that are identifiable
by arbitrary learning methods. Such very powerful learning methods are generated
from conditioning and lexicographic revision (update and conservative (radical)
upgrade in dynamic epistemic logic). More conservative methods turn out not to
be universal. This indicates the existence of a tension between learning power and
conservatism. We can see that the weakness of the minimal revision method lies
in ignoring information that is already believed. Universal belief-revision methods
perform operations on plausibility states even if they do not influence the current
beliefs immediately. These operations pay off as the process continues.
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4.6 Learning from Positive and Negative Data

We will now extend our framework to account for revising with negation. Let us
consider the stream ε that consists of both positive and negative data:6

set(ε) ⊆ Prop ∪ {p | p ∈ Prop}.

All notions defined in Sections 4.1 and 4.5 (soundness and completeness of a
stream, identifiability in the limit, universality, etc.) are analogous for this case.

Let us recall the definition of the epistemic state, together with the additional
explanation how to interpret the negative information.

Definition 4.6.1. Let Prop be the a (possibly infinite) set of atomic propositions.
A possible world is a valuation over Prop, and it can be identified with a set
s ⊆ Prop. We say that p is true in s (write s |= p) iff p ∈ s, we say that p is
true in s (write s |= p) iff p /∈ s.

Proposition 4.6.2. Conditioning and lexicographic revision generate standardly
universal learning methods for positive and negative data.

Proof. In fact, any ω-type order on S gives a suitable prior plausibility assignment.
Let us take s ∈ S. Since ≤ is ω-type it is well-founded, there are only finitely
many more plausible worlds. For each such world t ∈ S we collect a pn ∈ t such
that pn ∈ s .− t ( .− stands for the symmetric difference of two sets). Then we
construct a finite data sequence σ enumerating the all the information obtained
in this manner, including pn if pn ∈ s or p̄n if pn /∈ s. Obviously σ is an initial
segment of some data stream ε for s, hence set(σ) is enumerated in finite time
by every data stream ε for s. After set(σ) has been observed all worlds that are
more plausible than s will be deleted (in the case of conditioning) or will become
less plausible than s. Hence, conditioning and lexicographic revision generate
universal learning methods.

Proposition 4.6.3. Minimal revision is not universal for positive and negative
data.

Proof. We will give a counterexample, an epistemic state that is identifiable in the
limit on positive and negative data streams, but is not identifiable in the limit by
the minimal revision method. Let us first introduce the sets crucial for constructing
the counterexample. Let SN := {pi | i ∈ N}, Spos := {Si = {p0, . . . , pi} | i ∈ N},
Sneg := {Ti = SN − {p0 . . . pi} | i ∈ N}. Now we define our epistemic state in the
following way:

S := {SN, ∅} ∪ Spos ∪ Sneg.
First let us observe that S is countable, and hence it is identifiable in the limit

from positive and negative data (from the proof of Proposition 4.6.2). We will now

6In learning theory such streams are called ‘informants’, see Jain et al., 1999.
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show that for any total preorder ≤ on S there is a set in S that is not identifiable
in the limit by the minimal revision method. We will consider three basic cases:
∅ < SN, SN < ∅ and SN ∼ ∅.

1. ∅ < SN. Let B ⊂ S be the set of all C such that SN < C. There are two
cases:

(a) B 6= ∅. Then there is a set C such that ∅ < SN < C and C ∈ Spos∪Sneg.
Then C is not identifiable in the limit by the minimal revision method.

(b) B = ∅. Then all sets from Spos are at least as plausible as SN. Then
SN is not identifiable in the limit.

2. SN < ∅. Again, let B ⊂ S be the set of all C such that ∅ < C. Let us again
consider two cases.

(a) B 6= ∅. Then there is a set C such that SN < ∅ < C and C ∈ Spos∪Sneg.
Then C is not identifiable in the limit by the minimal revision method.

(b) B = ∅. Then all sets from Sneg are at least as plausible as ∅. Then ∅ is
not identifiable in the limit.

3. ∅ ∼ SN. With this assumption the elements of Spos∪Sneg can find themselves
in one of the three parts of the preorder. We can have elements that are
more plausible than ∅ (we will call the set of such sets B1), equally plausible
as ∅ (set of those will be called B2) or less plausible than ∅ (B3). Since our
epistemic set is infinite, one of B1, B2 and B3 has to be infinite. Let us
again consider three cases:

(a) B1 is infinite. Then B1 has to contain infinitely many sets from Spos,
in which case SN is not identifiable, or infinitely many sets from Sneg,
in which case ∅ is not identifiable.

(b) B2 is infinite. Then the argument from the above case holds, here for
B2.

(c) B3 is infinite. Then B3 has to contain infinitely many sets from Spos, in
which case all sets from Spos∩B3 are not identifiable, or infinitely many
sets from Sneg, in which case all sets from Sneg ∩B3 are not identifiable.

4.6.1 Erroneous Information

If data streams are known to be sound and complete with respect to the actual
world, the most economical strategy is to shrink the uncertainty range by deleting
those possibilities that contradict the data. This strategy is based on total trust
of the information source. However, in belief revision errors might be encountered
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(in the form of mistakes or lies). Eliminating worlds that contradict the incoming
information is then risky and irrational. It is better to change beliefs via some
upgrade method, that does not have any built-in mechanism of deletion. Let us
compare the performance of upgrading strategies on erroneous data.

To consider errors, we will give up the soundness of data streams, i.e., we
will allow data that are false in the real world. To still keep the identification of
the real world possible, the data streams are required to be ‘fair’: there are only
finitely many errors, and every error is eventually corrected.

Definition 4.6.4. A stream ε of positive and negative data is fair with respect to
the world s iff:

• ε is complete with respect to s,

• there is n ∈ N such that for all k ≥ n, all the data in s |=
∧
εk , and

• for every i ∈ N and for every ϕ ∈ εi such that s 2 ϕ, there exists some
k ≥ i, such that ϕ ∈ εk.

Notions defined in Subsection 4.5 (identifiability in the limit, universality, etc.)
are defined analogously for fair data streams.

We will now demonstrate that lexicographic revision deals with errors in a
skillful manner. Before we get to that we will introduce and discuss the notion of
propositional upgrade (which is a special case of generalized upgrade, see Baltag &
Smets, 2009b). Such an upgrade is a transformation of an epistemic-plausibility
state that can be given by any finite sequence of mutually disjoint propositional
sentences x1, . . . , xn. The corresponding propositional upgrade (x1, . . . , xn) acts
on an epistemic-plausibility state (S,≤S) by changing the preorder ≤S as follows:
all worlds that satisfy x1 become less plausible than all satisfying x2, all the worlds
satisfying x2 become less plausible than all x3 worlds, etc., up to the worlds which
satisfy xn. Moreover, for any k such that 1 ≤ k ≤ n, among the worlds satisfying
xk the old order ≤S is kept. In particular, our lexicographic revision is a special
case of such propositional upgrade, namely in these terms lexicographic revision
with ϕ can be identified with the propositional upgrade (¬ϕ, ϕ).

Lemma 4.6.5. The class of propositional upgrades is closed under sequential
composition.

Proof. We need to show that the sequential composition of any two propositional
upgrades gives a propositional upgrade. Let us take X := (x1, . . . , xn) and
Y := (y1, . . . , ym). The sequential composition XY is equivalent to the following
propositional upgrade:

(x1 ∧ y1, . . . , x1 ∧ yn, x1 ∧ y2, . . . , xn ∧ y2, . . . , x1 ∧ ym, . . . , xn ∧ ym).

To show this let us take an arbitrary epistemic-plausibility state (S,≤S) and
apply upgrades X and Y successively. First, we apply to (S,≤S) the upgrade X.
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We obtain the new preorder ≤XS , in which all worlds satisfying x1 are less plausible
than all x2-worlds, etc., and within each such partition the old order ≤S is kept.
Now, to this new epistemic-plausibility state we apply the second upgrade, Y ,
obtaining the new preorder ≤XYS , in which all y1-worlds are less plausible than all
y2-worlds, etc. However, since the upgrade Y has been applied to the preorder ≤XS
we also know that the new preorder ≤XYS has the following property: for each j,
such that 1 ≤ j ≤ m, within the partition given by yj, we have that all x1-worlds
are less plausible than all x2-worlds, etc. At the same time in each j and k, such
that 1 ≤ j ≤ m and 1 ≤ k ≤ n, in the partition (yj ∧ xk) the preorder ≤S is
maintained.

Putting this together, we get that ≤XYS has the following structure:

‖(x1 ∧ y1)‖ ≥XYS . . . ≥XYS ‖(xn ∧ y1)‖ ≥XYS

‖(x1 ∧ y2)‖ ≥XYS . . . ≥XYS ‖(xn ∧ y2)‖ ≥XYS . . . ≥XYS ‖(xn ∧ ym)‖.

Moreover, within each such partition, the old preorder ≤S is kept.
The final observation is that the above setting can be obtained directly by the

propositional upgrade of the following form:

(x1 ∧ y1, . . . , x1 ∧ yn, x1 ∧ y2, . . . , xn ∧ y2, . . . , x1 ∧ ym, . . . , xn ∧ ym).

Now we are ready to show that lexicographic revision is well-behaved on fair
streams.

Proposition 4.6.6. Lexicographic revision generates a standardly universal belief-
revision-based learning method for fair streams of positive and negative data.

Proof. First let us recall that lexicographic revision, Lex, is standardly universal
on positive and negative data. For the above conjecture it is left to be shown
that it retains its power on fair streams. It is sufficient to show that lexicographic
revision is ‘error-correcting’: the effect of revising with the stream ϕ, σ, ϕ is exactly
the same as with the stream σ, ϕ, where σ is a sequence of propositions. The
proof uses the properties of sequential composition for propositional upgrade.

Let us assume that length(σ) = n. In terms of generalized upgrade we need to
demonstrate that the sequential composition (¬ϕ, ϕ)(¬σ1, σ1) . . . (¬σn, σn)(ϕ,¬ϕ)
is equivalent to (¬σ1, σ1) . . . (¬σn, σn)(ϕ,¬ϕ).

From Lemma 4.6.5 we know that propositional upgrade is closed under se-
quential composition. Hence, in the equivalence to be shown, we can replace the
composition (¬σ1, σ1) . . . (¬σn, σn) by only one generalized upgrade, which we will
denote by (x1, . . . , xm). Now, we have to show that: (¬ϕ, ϕ)(x1, . . . , xm)(ϕ,¬ϕ)
is equivalent to: (x1, . . . , xm)(ϕ,¬ϕ).

By the proof of Lemma 4.6.5, the composition (x1, . . . , xn)(ϕ,¬ϕ) has the
following form:

(x1 ∧ ϕ, . . . , xn ∧ ϕ, x1 ∧ ¬ϕ, . . . , xn ∧ ¬ϕ).
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Accordingly, the other upgrade, (¬ϕ, ϕ)(x1, . . . , xn)(ϕ,¬ϕ), has the following
form:

(¬ϕ ∧ x1 ∧ ϕ,ϕ ∧ x1 ∧ ϕ, . . . ,¬ϕ ∧ xn ∧ ϕ,ϕ ∧ xn ∧ ϕ,¬ϕ ∧ x1 ∧ ¬ϕ,ϕ ∧ x1 ∧ ¬ϕ, . . . ,

¬ϕ ∧ xn ∧ ¬ϕ,ϕ ∧ xn ∧ ¬ϕ).

Let us observe that some of the terms in the above upgrade are inconsistent.
We can eliminate them since they correspond to empty subsets of the epistemic-
plausibility state. We obtain:

(x1 ∧ ϕ, . . . , xn ∧ ϕ, x1 ∧ ¬ϕ, . . . , xn ∧ ¬ϕ).

The observation that the two propositional upgrades turn out to be the same
concludes the proof.

Proposition 4.6.7. Conditioning and minimal revision are not universal for fair
streams.

Proof. Conditioning does not tolerate errors at all. On any εi such that εi * s
conditioning will remove s and it does not provide a way to revive it. Minimal
revision, as it has been shown, is not universal on regular positive and negative
data streams, which are a special case of fair streams.

Summary In this section we have shown how the framework of iterated belief
revision can be enriched by the use of negative information. First, we investigated
positive and negative information that is sound and complete. In this case,
both conditioning and lexicographic revision are standardly universal, i.e., there
are well-founded total orders that, together with either of the two mentioned
belief-revision methods, generate universal learning methods. Minimal revision
again turns out to be insufficient. Secondly, we define fair data streams that
use both positive and negative information. Such fair streams contain a finite
number of errors and every error is eventually corrected later in the stream. The
conditioning revision method again proves to be universal on fair streams, because
it overrides inconsistent information. Conditioning and minimal revision lack this
error-correcting property.

4.7 Conclusions and Perspectives

We have considered iterated belief-revision policies of conditioning, lexicographic
and minimal revision. We have identified certain features of those methods
relevant in the context of iterated revision: data-retention, conservatism, and
history-independence. We defined learning methods based on those revision
policies and we have shown how the aforementioned properties influence the
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learning process. Throughout this chapter we have been mainly interested in
convergence to the actual world on the basis of infinite data streams. In the setting
of positive, sound, and complete data streams we have exhibited that conditioning
and lexicographic revision generate universal learning methods. Minimal revision
fails to be universal, and the crucial property that makes it weaker is its strong
conservatism. Moreover, we have shown that the full power of learning cannot
be achieved when the underlying prior plausibility assignment is assumed to be
well-founded. In the case of positive and negative information, both conditioning
and lexicographic revision are universal. Minimal revision again is not. Finally,
in the setting of fair streams (containing a finite number of errors that all get
corrected later in the stream) lexicographic revision again turns out to be universal.
Both conditioning and minimal revision lack the ‘error-correcting’ property.

Future work consists in multi-level investigation of the relationship between
learning theory, belief revision, and dynamic epistemic logic. There surely are
many links still to be found, with interesting results for everyone involved. What
seems to be especially interesting is the multi-agent extension of our results. In
terms of the efficiency of convergence it would enrich the multi-agent approach
to information flow, an interesting subject for epistemic and doxastic logic. The
interactive aspect would probably be appreciated in formal learning theory, where
the single-agent perspective is clearly dominating. Another way to extend the
framework is to allow revision with more complex formulae. This would perhaps
link to the AGM approach, and to the philosophical investigation into the process
of scientific inquiry, where possible realities have a more ‘theoretical’ character.



Chapter 5

Epistemic Characterizations of Identifiability

In this chapter we will further investigate the connection between formal learning
theory and modal-temporal logics of belief change. We will again focus on the
language-learning paradigm, in which languages are treated as sets of positive inte-
gers.1 In the previous chapter we focused on the semantic analysis of identifiability
in the limit. Now, we will devote more attention to the syntactic counterparts of
our logical approach to identifiability, focusing on both finite identifiability and
identifiability in the limit. We will show how the previously chosen semantics can
be reflected in an appropriate syntax for knowledge, belief, and their changes over
time. The corresponding notions of learning theory and dynamic epistemic logic
are given in Chapter 2.

Our approach to inductive learning in the context of dynamic epistemic and
epistemic temporal logic is as follows. As in the previous chapter, we take the initial
class of sets to be possible worlds in an epistemic model, which mirrors Learner’s
initial uncertainty over the range of sets. The incoming pieces of information
are taken to be events that modify the initial model. We will show that iterated
update on epistemic models based on finitely identifiable classes of sets is bound
to lead to the emergence of irrevocable knowledge. In a similar way identifiability
in the limit leads to the emergence of stable belief. Next, we observe that the
structure resulting from updating the model with a sequence of events can be
viewed as an epistemic temporal forest. We explicitly focus on protocols that are
assigned to worlds in set-learning scenarios. We give a temporal characterization
of forests that are generated from learning situations of finite identifiability and
identifiability in the limit. We observe that a special case of this protocol-based
setting, in which only one stream of events is allowed in each state, can be used
to model the function-learning paradigm. We show that the simple setting of
iterated epistemic update cannot account for all possible learning situations. In

1In this chapter we are concerned with logical characterizations of learning, hence we will
often refer to languages of certain logics. To avoid confusion for the time being we will replace
the name language learning with set learning (see Section 2.1).
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the end we conclude our considerations and present possible directions of further
work.

5.1 Learning and Dynamic Epistemic Logic

Following our observations about the power of the conditioning revision method
(Chapter 4) we will still be concerned with epistemic update. To recall the idea
let us consider some simple examples of single-agent propositional update.

Example 5.1.1. Let us take a single-agent epistemic model M = 〈W,∼, V 〉,
where W = {w1, w2, w3}, ∼ = W ×W , Prop = {p1, p2, p3, p4} and the valuation
V : Prop→ P(W ) is defined in the following way V (p1) = {w1, w2, w3}, V (p2) =
{w1, w2}, V (p3) = {w2, w3}, V (p4) = {w3}, in other words: w1 |= p1 ∧ p2 ∧ ¬p3 ∧
¬p4, w2 |= p1 ∧ p2 ∧ p3 ∧ ¬p4, and w3 |= p1 ∧ p3 ∧ p4 ∧ ¬p2. Let us assume that
w2 is the actual world, and that the agent receives propositional information that
is consistent with w2 in the following order: p1, p2, p3. Receiving p1 does not
change anything—every world satisfies p1. Then p2 comes in, eliminating w3,
since w3 6|= p2. The agent is now uncertain only between w1 and w2. The last
information p3 allows deleting w1 because w1 6|= p3. The uncertainty of the agent
now disappears—the only possibility left is w2. Moreover, whatever true (consistent
with the actual world w2) information comes in, w2 cannot be eliminated.

In fact, if any of the worlds is the actual one, and the agent will receive truthful
and complete propositional information about it, he will be able to eventually
eliminate all other worlds, and therefore gain full certainty about his situation.

Example 5.1.2. Let us again take a similar epistemic model, this time with the
following valuation V (p1) = {w1, w2, w3}, V (p2) = {w1, w2}, V (p3) = {w1}. Now,
only one world, namely w1, can get identified by receiving truthful and complete
propositional information. In case w2 (or w3) is the actual world, the agent will
never be able to eliminate w1 (or w1 and w2), and therefore the uncertainty will
always remain.

5.1.1 Dynamic Epistemic Learning Scenarios

In Examples 5.1.1 and 5.1.2, the uncertainty range of the agent is revised as new
pieces of data (in the form of propositions) are received. The information comes
from a completely trusted source, and as such causes the agents to eliminate
the worlds that do not satisfy it. In learning theory it is common to assume
the truthfulness of incoming data, and therefore, in principle, it is justified to
use epistemic update as a way to perform the inquiry (for such interpretation of
update see Van Benthem, 2006). It is important to note that public announcement
is not the main notion of dynamic epistemic logic. Our update-based approach to
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learning gives the first connection, but dynamic epistemic logic can typically also
deal with varieties of ‘soft information’ that is less trusted (see Section 2.2).

In this section we will present single-agent learning scenarios in the framework
of doxastic epistemic logic. We base our investigations on the learning-theoretic
framework defined in Section 2.1.

First, the initial learning model is a simple epistemic model whose worlds
correspond to the initial class of sets.

Definition 5.1.3. Let C = {S1, S2, . . .} be a class of sets such that for all i ∈ N,
Si ⊆ N. Our initial learning model MC is a triple:

〈WC,∼, VC〉,

where WC = C, ∼ = WC ×WC, VC : Prop∪nom→ P(WC), such that Si ∈ VC(pn)
iff n ∈ Si and for each set Si ∈ C, we take a nominal i ∈ nom and we set
VC(i) = {Si}.

In words, we identify states of the model with sets, we also assume that our
agent does not have any particular initial information or preference over the
possibilities. The interpretation of the propositional letters is as follows. Let
C = {S1, S2, . . .} be a class of sets, and let U =

⋃
C be the universal set of C.

For every piece of data n ∈ U we take a propositional letter pn. The nominals
correspond to indices of sets. They can be interpreted as finite descriptions of sets
or as theories that describe possible sequences of events.

In the previous chapter we analyzed our central topic of iterated update. The
definitions of data streams, data sequences and related notions remain the same
for this chapter. We will be concerned with sound and complete data streams (see
Section 4.1).

5.1.2 Finite Identification in DEL

The research in dynamic epistemic and dynamic doxastic logic often touches the
subject of converging to some desired states: (common) knowledge or (joint)
true belief (see, e.g., Baltag & Smets, 2009a). In this respect it is concerned
with multi-agent versions of the belief-revision problem. In this section we will
show how to use the notion of finite identification to characterize convergence to
irrevocable knowledge. To establish the first connection we will restrict ourselves
to the single-agent case.

Definition 5.1.4. Iterated epistemic update of model M with an infinite data
stream ε stabilizes to M′ iff there is an n ∈ N, such that for all m ≥ n, Mε�m =
M′. In such cases we will sometimes write that the generated epistemic model
Mε stabilizes to M′.



76 Chapter 5. Epistemic Characterizations of Identifiability

In our considerations we will use the characterization of finite identifiability of
sets from positive data (Mukouchi, 1992). First we recall the notion of the finite
definite tell-tale set.

Definition 5.1.5 (Mukouchi 1992). A set Di is a definite finite tell-tale set of
Si ∈ C if

1. Di ⊆ Si,

2. Di is finite, and

3. for any index j, if Di ⊆ Sj then Si = Sj.

The non-computable case of finite identifiability can be then characterized in
the following way.

Theorem 5.1.6 (Mukouchi 1992). A class C is finitely identifiable from positive
data if and only if for every set Si ∈ C there is a definite finite tell-tale set Di.

We are now ready to show that epistemic update performed on finitely identi-
fiable class of sets leads to irrevocable knowledge.

Theorem 5.1.7. The following are equivalent:

1. C is finitely identifiable.

2. For every Si ∈ WC and every data stream ε for Si the generated epistemic
model Mε

C stabilizes to M′
C = 〈W ′

C,∼′, VC〉, where W ′
C = {Si} and ∼′ =

{(Si, Si)}.

Proof. The proof of this assertion consists mainly in understanding our earlier
semantic definitions and arguments, and seeing that they conform to a simple
syntactic pattern definable in epistemic logic. Nevertheless, for once, we add some
explicit formal detail to show how this works.

(1⇒ 2) Let us assume that C is finitely identifiable. Then, by Theorem 5.1.6,
for every set Si ∈ C there is a finite definite tell-tale set Di ⊆ Si such that Di is
not a subset of any other set in C. Let us then take one Si and the corresponding
finite definite tell-tale set Di. For every data stream ε for Si there is a finite initial
segment, ε�m, such that Di ⊆ set(ε�m). Then by stage m every Sj such that
i 6= j has been eliminated by the update.

(2⇒ 1) Let us assume that for every Si ∈ WC and a data stream ε for Si, the
generated epistemic model Mε

C stabilizes to M′
C = 〈W ′

C,∼′, VC〉, where W ′
C = Si

and ∼′ = {(Si, Si)}. Assume that C is not finitely identifiable. Therefore, by
Theorem 5.1.6, there is a set Si ∈ C such that every finite subset of Si is included
in some Sj ∈ C such that i 6= j. Then for all n, if Mε�n

C = 〈W ε�n
C ,∼ε�n, V ε�n

C 〉 then

{Si, Sj} ⊆ W ε�n
C , so Mε

C clearly does not stabilize to M′
C = 〈W ′

C,∼′, VC〉, where
W ′
C = {Si} and ∼′ = {(Si, Si)}. Contradiction.
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With respect to the language of epistemic logic LEL given in Definition 2.2.3,
the following corollary corresponds to the semantic characterization in Theorem
5.1.7.

Corollary 5.1.8. The following are equivalent:

1. C is finitely identifiable.

2. For every Si ∈ WC and every data stream ε for Si the generated epistemic
model Mε

C stabilizes to M′
C = 〈W ′

C,∼′, VC〉, where W ′
C = {Si} and M′

C, Si |=
K i.

Proof. From Theorem 5.1.7 we know that 1 is equivalent to:

# For all Si ∈ WC and every data stream ε for Si the generated epistemic model
Mε
C stabilizes to M′

C = 〈W ′
C,∼′, VC〉, where W ′

C = {Si} and ∼′= {(Si, Si)}.

(#⇒ 2) Let us take Si ∈ WC and data stream ε for Si and assume that the
generated epistemic modelMε

C stabilizes toM′
C = 〈W ′

C,∼′, VC〉, where W ′
C = {Si}

and ∼′= {(Si, Si)}. Then, by definition of the semantics of LEL, M′, Si |= K i,
since it is true that for all Sj ∈ K[Si], we have that M′

C, Sj |= i.

(2 ⇒ #) Let us assume that for every Si ∈ WC and every data stream ε for
Si the generated epistemic model Mε

C stabilizes to M′
C = 〈W ′

C,∼′, VC〉, where
W ′
C = {Si} and M′

C, Si |= K i. This means that for all Sj ∈ K[Si] we have that
M′
C, Sj |= i. But from definition of the valuation VC we know that Si is the only

state in WC that validates i. Therefore ∼′ = {(Si, Si)}.

The above results provide a characterization of the outcome of finite identifica-
tion in the simple language of epistemic logic. To incorporate more dynamics into
the syntactic counterpart of finite learning we can use the language LPAL.2

Corollary 5.1.9. The following are equivalent:

1. C is finitely identifiable.

2. For every Si ∈ WC and every data stream ε for Si there is an n ∈ N such
that for all m ≥ n, MC, Si |= [!(

∧
set(ε�m))]K i.

Proof. This equivalence follows directly from Corollary 5.1.8 and the semantics of
LPAL, Definition 2.2.8.

2To bring out the future behavior more explicitly in our syntax, we could also formulate this
result in terms of repeated announcement, in a version of public announcement logic that also
allows Kleene star. We forego such extensions here.
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5.1.3 Identification in the Limit and DDL

In Chapter 4 we extensively discussed the interrelation between identifiability in
the limit, update (conditioning), and the notion of belief. Now, on the basis of
those results we can give the following corollary.

Corollary 5.1.10. The following are equivalent:

1. C is identifiable in the limit.

2. There is a plausibility preorder ≤ ⊆ WC×WC such that for every Si ∈ WC and
every data stream ε for Si in the generated epistemic model Mε

C, min≤W
ε
C

stabilizes to {Si}.

3. There exists a plausibility preorder ≤ ⊆ WC × WC such that for every
Si ∈ WC and every data stream ε for Si there is n ∈ N such that for all
m ≥ n, (MC,≤), Si |= [!(

∧
set(ε�m))]B i.

Clause 3 gives a characterization in public announcement logic with the operator
of absolute belief.3 The plausibility order used in the above corollary is defined
and discussed in Section 4.5. It is based on the characterization of identification
in the limit and the concept of the finite tell-tale set (see Section 2.1).

Let us additionally note that the last clauses of Corollaries 5.1.8, 5.1.9, and
5.1.10 describe the persistence of the relevant doxastic-epistemic states. In fact,
under the conditions of update, it is the case that as soon as the desired doxastic-
epistemic state is reached it cannot be lost later in the process.

Until now we have shown how to model learning scenarios in dynamic epistemic
and doxastic logic. In order to explicitly express the possibility of convergence as
a temporal property, we will view the structure generated by iterated epistemic
update as a temporal branching model. In this we follow the recently established
bridge between dynamic epistemic and epistemic temporal logic (see Van Benthem
et al., 2009).

5.2 Learning and Temporal Logic

We have shown how basic results connecting dynamic epistemic logic and learning
theory can be given syntactic formulations in terms of the K and B operators.
However, we are still missing a crucial dimension, the temporal one. Implicitly,
we already considered the temporal aspects, since in fact the knowledge and
beliefs stabilized only after some finite sequences of announcements or other

3Given the reduction axioms of dynamic doxastic logic for ‘factual formulae’, such as the
nominal i, an equivalent formulation would be: There is a plausibility preorder ≤ ⊆WC ×WC
such that for every Si ∈ WC and every data stream ε for Si there is n ∈ N such that for all
m ≥ n, (MC ,≤), Si |= B(

∧
set(ε�m)) i.
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informative events. This long-term aspect could be formalized in extensions of
public announcement logic with program operations, in particular, Kleene iteration.
While this seems an interesting line to pursue, we feel that this still does not do
justice to another striking logical feature of learning theory: its resemblance to
temporal logics. In what follows, we will show how to establish the connection,
taking advantage of some recent developments that have linked dynamic epistemic
logic to epistemic temporal logics, via the crucial notion of a protocol.

To make this connection, we need to turn to the more general version of DEL
based on event models and product update (Baltag et al., 1998). We will just give
the absolute basics here, referring mainly to the literature.

5.2.1 Event Models and Product Update

Iterated update can be placed in a more general perspective. Obviously, the
incoming information does not have to be propositional. It does not even have to
be purely linguistic. It can be any event that itself has an epistemic structure.
To consider changes caused by such arbitrary events, we will now introduce the
notion of event model, which represents the epistemic and informational content
of what ‘happens’.

Definition 5.2.1. An event model is a triple:

E = 〈E, (∼Ea)a∈A, pre〉,

where E 6= ∅ is a set of events; for every agent a ∈ A, ∼Ea is a binary equivalence
relation on E, and pre : E → LEL, is a precondition function where LEL is a set
of formulae of some epistemic language. A pair (E , e), where e ∈ E is called a
pointed event model.

For every agent a ∈ A, the relation ∼Ea encodes that agent’s epistemic informa-
tion about the event taking place. The precondition function pre maps events to
epistemic formulae. An event will be executable in some state only if that state
satisfies the precondition of this event.

The effect of updating an epistemic model M with an event model E can be
computed according to the product update.

Definition 5.2.2. Let M = 〈W, (∼a)a∈A, V 〉 be an epistemic model and E =
〈E, (∼Ea)a∈A, pre〉 be an event model. The product update of M with E gives a
new epistemic model M⊗E = 〈W ′, (∼′a)a∈A, V ′〉}, where:

1. W ′ = {(w, e) | w ∈ W & e ∈ E & w |= pre(e)};

2. (w, e) ∼′a (w′, e′) iff w ∼a w′ and e ∼Ea e′;

3. and the valuation is as follows: (w, e) ∈ V ′(p) iff w ∈ V (p).

Illustrations of the strength of product update can be found in (Baltag & Moss,
2004; Van Benthem, 2010; Van Benthem & Dégremont, 2010; Dégremont, 2010).
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5.2.2 Dynamic Epistemic Logic Protocols

By making a step from dynamic epistemic logic into epistemic temporal logic we
can analyze the temporal structure of update. Redefining the iterated epistemic
update in terms of protocols (see Fagin, Halpern, Moses, & Vardi, 1995; Parikh
& Ramanujam, 2003) will bring us closer to the temporal setting. A protocol
specifies sequences of events that are admissible in certain epistemic situations.
In this section, following Van Benthem et al. (2009), we will give the definition of
local protocols and epistemic models generated with respect to a protocol. By
doing this we prepare the grounds for our learning-theoretic setting.

A protocol P maps states in an epistemic model to sets of finite and infinite
sequences of event models closed under taking prefixes. It defines the admissible
runs of some informational process: In general, not every sequence of events may
be possible at a given state.

Let E be the class of all event models. Every state of the epistemic model
is assigned a set of sequences (infinite and finite) of event models closed under
taking finite prefixes, an element of the set

Prot(E) = {P ⊆ P(E∗ ∪ Eω) | P is closed under finite prefixes}.

Definition 5.2.3. Let us take an epistemic model M = 〈W, (∼a)a∈A, V 〉. A local
protocol for M is a function P : W → Prot(E).

Until now we have been concerned with the ε�n-generated epistemic modelM,
where ε�n is some sequence of propositions. We will now provide an analogous
notion of a model generated from a sequence of event models but according to
some specific local protocol.

Definition 5.2.4. Let M = 〈W, (∼a)a∈A, V 〉 be an epistemic model. We define
the (P, ε�n)-generated epistemic model MP,ε�n inductively, as follows:

MP,ε�0 = M
MP,ε�n+1 = 〈W P,ε�n+1,∼P,ε�n+1, V P,ε�n+1〉, where:

W P,ε�n+1 := {s | s ∈ W P,ε�n; s |= pre(εn+1) & ε�n+ 1 ∈ P (s)};
∼P,ε�n+1 := ∼P,ε�n�W P,ε�n+1;
V P,ε�n+1 := V P,ε�n�W P,ε�n+1.

The protocol-based approach to update has a straightforward temporal in-
terpretation. The question is how iterated product update can be interpreted
in epistemic temporal logics, which are widely used to study the evolution of
a system over time focusing on the information that agents possess. And this
perspective is exactly what we need.

5.2.3 Dynamic Epistemic and Epistemic Temporal Logic

Epistemic temporal logics are interpreted on epistemic temporal forests (see, e.g.,
Parikh & Ramanujam, 2003).
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Definition 5.2.5. An epistemic temporal model H is a tuple:

〈W,Σ, H, (∼a)a∈A, V 〉,

where W 6= ∅ is a countable set of initial states; Σ is a countable set of events;
H ⊆ WΣ∗ is a set of histories (sequences of events starting at states from W )
closed under non-empty finite prefixes; for each a ∈ A, ∼a ⊆ H × H is an
equivalence relation; and V : Prop → P(H) is a valuation. We write wh to
denote some finite history starting in the state w.

We sometimes refer to the 〈W,Σ, H〉-part of an ETL model as the temporal
protocol this model is based on. We refer to the information of an agent a at h
with Ka[wh] = {vh′ ∈ H | wh ∼a vh′}.

The question is now how to make the step from dynamic epistemic logic to
epistemic temporal logic. The relation between the two frameworks has already
been studied (see, e.g., Van Benthem & Liu, 2004; Van Benthem & Pacuit, 2006).
In particular, it has been observed that iterated epistemic update in dynamic
epistemic logic generates epistemic temporal forests satisfying certain properties
(see Van Benthem et al., 2009). We will refer to this construction by For(M, P )
and define it below.

We construct the forest by induction, starting with the epistemic model and
and then checking which events can be executed according to the precondition
function and to the protocol. Finally, the new information partition is updated
at each stage according to the product update. Since product update describes
purely epistemic change, the valuation stays the same as in the initial model.

Definition 5.2.6 (ETL forest generated by a DEL protocol). Each epistemic
model M = 〈W, (∼Ma )a∈A, V

M〉 and a local protocol P : W → Prot(E) generates
an ETL forest For(M, P ) of the form:

H = 〈WH,E, H, (∼a)a∈A, V 〉, where:

1. WH := W ;

2. H is defined inductively as follows:

H0 := WH;
Hn+1 := {(we1 . . . en+1) | (we1 . . . en) ∈ Hn;Mε�n, w |= pre(en+1)
and (e1 . . . en+1) ∈ P (w)};
H :=

⋃
0≤k<ωHk;

3. If w, v ∈ WH, then w ∼a v iff w ∼Ma v;

4. whe ∼a vh′e′ iff whe, vh′e′ ∈ Hk, wh ∼a vh′, e and e′ are states in an event
model E and e ∼Ea e′;
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5. Finally, wh ∈ V (p) iff w ∈ VM(p).

The correspondence between the iterated product update and an epistemic
temporal forest relies on some properties of epistemic temporal agents. To be
precise, it has been shown that the structures of iterated DEL update are in fact
epistemic temporal forests that satisfy the following conditions: perfect recall,
synchronicity, uniform no miracles and propositional stability. Let us introduce
those epistemic multi-agent assumptions.

Definition 5.2.7. Let us take H = 〈W,Σ, H, (∼a)a∈A, V 〉 to be an epistemic
temporal model.

Perfect Recall H satisfies perfect recall iff

for all whe, vh′f ∈ H if Ka[whe] = Ka[vh′f ], then Ka[wh] = Ka[vh′].

The condition of perfect recall expresses that agents do not forget past
information as further events take place.

Synchronicity H satisfies synchronicity iff

for all wh, vh′ ∈ H if Ka[wh] = Kb[vh′], then length[wh] = length[vh′].

Synchronicity is satisfied if the agents have access to some external discrete
clock and thus can keep track of the time.

Uniform-No-Miracles H satisfies uniform no miracles iff

for all wh, vh′ ∈ H such that wh ∼a vh′

and for all e1, e2 ∈ Σ with whe1, vh
′e2 ∈ H

if there are sh′′, th′′′ ∈ H such that sh′′e1 ∼a th′′′e2, then whe1 ∼a vh′e2.

Uniform-No-Miracles means that if an agent cannot distinguish between a
history terminating with e1 and a history whose last event is e2, then at
any time if he is unable to distinguish between two histories wh and vh′

then he is still unable to distinguish between whe1 and vhe2. This property
characterizes local ‘updaters’ that do not take into account the whole history
but that proceed in a step-by-step manner.

Propositional Stability H satisfies propositional stability iff for all wh,whe ∈
H we have p ∈ V (whe) iff p ∈ V (wh).

The following result says that the iterated product update of an epistemic
model M according to a protocol P generates an epistemic temporal forest that
validates the above-mentioned epistemic properties.

Theorem 5.2.8 (Van Benthem et al. 2009). An ETL-model H is isomorphic to the
forest generated by the sequential product update of an epistemic model according
to some state-dependent DEL-protocol iff it satisfies perfect recall, synchronicity,
uniform-no-miracles and propositional stability.
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5.2.4 Learning in a Temporal Perspective

Let us now see how the above construction can be used to analyze learning
scenarios.

Learning Event Models In our learning setting the incoming information has
a purely propositional character. A simple event learning model can be obviously
associated with every such piece of data in the following way.

Definition 5.2.9. Let C = {S1, S2, . . .} be a class of sets and, as before, U =
⋃
C

is the universal set of C. Let E : N→ E be a function that transforms an integer into
an event model in the following way: for each n ∈ N, E(n) = En = 〈{e},∼En , preE〉,
where ∼ = {(e, e)} and preE(e) = pn. Similarly, if S ⊆ N, E(S) = {E(n) | n ∈ S}.

In other words, for every piece of data n from U we take a propositional letter
pn. Then for each pn we take a simple public announcement event model. By
making the conceptual transition from the simple propositional update to the
event models we want to show that our framework conforms to the general setting
described in the previous section.

Local Set-Learning Protocol Intuitively, given a state Si ∈ WC, our protocol
P should authorize at Si any ω-sequence that enumerates Si and nothing more.
Our set-learning scenarios allow any enumeration of elements of a given set.
Therefore, the corresponding local protocol can be defined in the following way.

Definition 5.2.10. Let C = {S1, S2, . . .} be a class of sets and U =
⋃
C be the

universal set of C. For every Si ∈ WC, the set-learning local protocol, P (Si), is
the smallest subset of (E(U))ω that contains:

{f : ω → E(Si) | f is surjective},

and that is closed under non-empty finite prefixes.

Set-learning local protocols restrict the admissible sequences of events only in
terms of content and not in terms of ordering. It is easy to observe that such a
local protocol can replace the sets in learning scenarios. In principle we can then
skip the precondition check and instead decide whether an event can take place
just on the basis of the protocols. We will return to this issue in the end of this
chapter.

To sum up we will now complement our definition of the initial learning model
(Definition 5.1.3) with the local set-learning protocol.

Definition 5.2.11. Let C = {S1, S2, . . .} be a class of sets such that for all i ∈ N,
Si ⊆ N. The initial learning model with local protocol consists of:
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1. an epistemic model MC = 〈WC,∼, VC〉, where WC = C, ∼ = WC × WC,
VC : Prop ∪ nom→ P(WC), such that Si ∈ VC(pn) iff n ∈ Si and for each
set Si ∈ C, we take a nominal i and we set VC(i) = {Si}.

2. for each Si ∈ WC, a set-learning local protocol P (Si).

Now we are ready to define how our initial learning model and the local set-
learning protocol generate an epistemic temporal forest. We define the additional
set of designated propositional letters based on the previously used set of nominals
nom, Propnom := {qi | i ∈ nom}, and we assume that Propnom ⊆ Prop.

Definition 5.2.12 (Epistemic Temporal Learning Forest). A learning model
MC = 〈WC,∼M, VMC 〉 together with the local set-learning protocol P : W →
Prot(E) generates an ETL forest For(M, P ) of the form:

H = 〈WH,E, H,∼, V 〉, where:

1. WH := WC,

2. H is defined inductively as follows:

H0 := WH;

Hn+1 := {(we1 . . . en+1) | (we1 . . . en) ∈ Hn; MP,ε�n
C , w |= pre(en+1)

and (e1 . . . en+1) ∈ P (w)};
H :=

⋃
0≤k<ωHk;

3. If w, v ∈ WH, then w ∼ v iff w ∼M v;

4. whe ∼a vh′e′ iff whe, vh′e′ ∈ Hk, wh ∼ vh′, and e = e′;

5. Finally, the valuation V : Prop ∪ Propnom → P(H) is defined in the
following way:

• for every p ∈ Prop, wh ∈ V (p) iff w ∈ VMC (p);

• for every qi ∈ Propnom, wh ∈ V (qi) iff w ∈ VMC (i).

The above construction is in strict correspondence with the general case of
generated epistemic temporal forest of Definition 5.2.6. Our concept allows a
slight simplification in point 4 because of the very simple structure of our public
announcement events.

At this point we have the temporal structures that correspond to the learning
situation. The next step is to give a temporal characterization of forests that
satisfy the identifiability condition.
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5.2.5 Finite Identifiability in ETL

In this section we will give a general characterization of finite identification in
the language of an epistemic temporal logic (see Emerson & Halpern, 1986; Fagin
et al., 1995; Parikh & Ramanujam, 2003). The aim of this section is to give a
formula of epistemic temporal logic that characterizes learnable classes of sets.

Epistemic Temporal Language

Syntax The syntax of our epistemic temporal language LETL∗ is defined in the
following way.

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kϕ | Fϕ | Aϕ

where p ranges over a countable set of proposition letters Prop. Kϕ reads: ‘the
agent knows that ϕ’. Symbol F stands for future, and we define G to mean ¬F¬.
Aϕ means: ‘in all infinite continuations conforming to the protocol, ϕ holds’.

Semantics LETL∗ is interpreted over epistemic temporal frames, H, and pairs
of the form (ε, h), the former being a maximal, infinite history in our trees, and
the latter a finite prefix of ε (see Van der Meyden & Wong, 2003; Parikh &
Ramanujam, 2003).

Definition 5.2.13. We give the semantics of LETL∗. We skip the boolean clauses.
We take h v h′ to mean that h is an initial segment of h′, and p ∈ Prop.

H, ε, wh |= p iff wh ∈ V (p)
H, ε, wh |= Kϕ iff for all ε′, vh′ if vh′ ∈ K[wh] then H, ε′, vh′ |= ϕ
H, ε, wh |= Fϕ iff there is σ ∈ Σ∗ s.t. wh′ = whσ and H, ε, wh′ |= ϕ
H, ε, wh |= Aϕ iff for all ε′ ∈ P (w) such that wh @ ε′ we have H, ε′, wh |= ϕ

The modality ‘A’ refers to the particular infinite sequences that belong to the
chosen protocol associated to w. It can be viewed as an operator that performs a
global update on the overall temporal structure, ‘accepting’ only those infinite
histories that conform to the protocol.

To give a temporal characterization of finite identifiability we need to express
the following idea. In our epistemic temporal forest, for any starting, bottom node
Si it is the case that for all branches in the future there will be a point after which
the agent will know that he started in Si, which means that he will remain certain
about the partition of the tree he is in. The designated propositional letters from
Propnom correspond to the partitions, which can also be viewed as underlying
theories that allow predicting further events.4 Formally, with respect to finite
identifiability of sets, the following theorem holds.

4The characterization involving designated propositional letters can be replaced with one that
uses nominals as markers of bottom nodes. For such an approach see Dégremont & Gierasimczuk,
2009.
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Theorem 5.2.14. The following are equivalent:

1. C is finitely identifiable.

2. For all Si ∈ WC and ε ∈ P (Si) the learner’s knowledge about the initial state
stabilizes to Si on ε in the generated forest For(MC, P ).

3. For(MC, P ) |= qi → AFGKqi.

Proof. (1 ⇔ 2) This equivalence restates the earlier result (Theorem 5.1.7) in
terms of epistemic temporal forests.

(2⇔ 3) Let us first observe that in our generated epistemic temporal forest
For(MC, P ) the following holds:

Sih ∼ Sjh
′ iff Si ∼ Sj and h = h′. (5.1)

Now let us analyze the structure of Clause 3. For(MC, P ) |= qi stands for a choice
of the partition of the forest, and hence, implicitly, for the initial node Si; then,
the temporal prefix AF stands for: ‘on every infinite continuation of Si consistent
with the protocol there is a point’. Hence, it expresses that for all ε for Si there
is a special finite point, a point in which the epistemic temporal fragment of the
formula GKqi holds. Following this observation, to conclude the proof it suffices
to show the following proposition:

Proposition 5.2.15. Let Si ∈ WH and Sih ∈ H. The following are equivalent:

1. For all σ ∈ Σ∗, such that Sihσ ∈ H, K[Sihσ] = {Sihσ};

2. For(MC, P ), Sih |= GKqi.

(1⇒ 2) Assume that K[Sih] = {Sih}. By the definition of the valuation V , we
get that For(MC, P ), Sih |= qi. Then, by the assumption and the semantics of K,
we get that For(MC, P ), Sih |= Kqi. Finally, since For(MC, P ) satisfies Perfect
Recall and by the definition of protocol P , we get that For(MC, P ), Sih |= GKqi.

(2⇒ 1) Now, assume that For(MC, P ), Sih |= GKqi. Then, by the semantics
of K and by (5.1) we get that for all σ ∈ Σ∗, such that Sihσ ∈ H, K[Sihσ] =
{Sihσ}.

In Chapter 4 we mentioned the adequacy of epistemic models and update with
respect to the modeling of finite identification. However, we have been mostly
concerned with identification in the limit. In the next section we will explore the
language of a temporal logic that can express the condition of identifiability in
the limit.
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5.2.6 Identification in the Limit and DETL

In order to give a temporal characterization of identifiability in the limit we need
to be able to express beliefs of the learner. Therefore, our temporal forests should
include a plausibility ordering. In Chapter 4 we have shown that conditioning
(update) is a universal learning method from truthful data. In other words, in the
case of identifiability in the limit, eliminating the worlds of an epistemic plausibility
model is enough to reach stable and true belief. This allows considering very
specific temporal structures that result from updating a doxastic epistemic model
with purely propositional information.5

Definition 5.2.16. An epistemic plausibility temporal forest H is a tuple:

〈W,Σ, H, (∼a)a∈A, (≤a)a∈A, V 〉,

where W 6= ∅ is a countable set of initial states; Σ is a countable set of events;
H ⊆ WΣ∗ is a set of histories (sequences of events starting at states from W ) closed
under non-empty finite prefixes; for each a ∈ A, ∼a ⊆ H ×H is an equivalence
relation, ≤a ⊆ H × H is a plausibility preorder; and V : Prop → P(H) is a
valuation. We write wh to denote some finite history starting in the state w.

Doxastic Epistemic Temporal Language

Syntax Our doxastic epistemic temporal language of LDETL∗ is defined by the
following inductive syntax.

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kϕ | Bϕ | Fϕ | Aϕ

where p ranges over a countable set of proposition letters Prop. Kϕ reads: ‘the
agent knows that ϕ’, and Bϕ: ‘the agent believes that ϕ’. Symbol F stands for
future, G is defined as ¬F¬. Aϕ means: ‘in all continuations ϕ’.
LDETL∗ is interpreted over epistemic plausibility temporal forests, its semantics

is for the most part the same as LETL∗ . Below we give the semantics of the missing
clause, the belief operator B.

Definition 5.2.17.

H, wh |= Bϕ iff for all vh′, if vh′ ∈ min≤K[wh], then H, vh′ |= ϕ

We again start with an initial learning epistemic model that corresponds to
a class of sets and a local set-learning protocol. This time we want to add a
plausibility ordering to generate an epistemic plausibility temporal forest. The
construction is defined in the following way:

5For more complex actions performed on plausibility models in the context of the comparison
between dynamic doxastic and doxastic temporal logic see Van Benthem & Dégremont, 2010.
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Definition 5.2.18 (Learning Forest). A learning model MC = 〈WC,∼M, VMC 〉
together with the local set-learning protocol P : W → Prot(E) and a plausibility
preorder ≤M ⊆ WC ×WC generates an DETL forest For(M, P,≤) of the form:

H = 〈WH,E, H,∼,≤, V 〉, where:

1. WH, E, H, ∼ and V are defined as in the generated epistemic temporal
forest, Definition 5.2.12;

2. If w, v ∈ WH and wh, vh′ ∈ H, then wh ≤ vh′ iff wh ∼ vh′ and w ≤M v.

As in the case of finite identifiability we will now provide a formula of doxastic
epistemic temporal logic that characterizes identifiability in the limit.

Theorem 5.2.19. The following are equivalent:

1. C is identifiable in the limit.

2. There exists a plausibility preorder ≤ ⊆ WC ×WC such that for all Si ∈ WC
and ε ∈ P (Si) the learner’s belief about the initial state stabilizes to Si on ε
in the generated forest For(MC, P,≤).

3. There exists a plausibility preorder ≤ ⊆ WC×WC such that For(MC, P,≤) |=
qi → AFGBqi.

Proof. (1 ⇔ 2) This equivalence follows from the existence of an appropriate
preorder, defined in Section 4.5, and its adaptation to the notion of epistemic
temporal forest.

(2 ⇔ 3) The proof has a strategy similar to the proof of Theorem 5.2.14.
This time the crucial observation is that in For(MC, P,≤), Sih ≤ Sjh

′ iff Si ≤
Sj and h = h′.

Let us observe that the last clauses of Theorems 5.2.14 and 5.2.19 can be
strengthened to exclude the condition of persistence of the doxastic-epistemic
states. In our setting, once such a state is reached, it cannot disappear. In the
above characterizations this can be reflected by dropping the temporal operator
G.

The above theorems give simple syntactic temporal characterizations of finite
and limiting learning in doxastic epistemic temporal logic. We do not provide any
proof theory for these notions, any ‘logic of learning’. However, we do perceive this
as an interesting direction for future work. Moreover, we are especially interested
in giving temporal characterizations of various learning-theoretic facts, e.g., the
existence of tell-tale sets or the locking-sequence lemma (see Chapter 4). Further
questions concern modifications of our syntactic temporal characterization and
observing what notions of learning can be obtained this way.
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5.2.7 Further Questions on Protocols

Uniform-No-Miracles states that any two histories that are not distinguishable
from an agent’s perspective cannot get distinguished by extending them with the
same event (or two indistinguishable event states). In our learnability context a
strengthening of this rule seems interesting.

Let us consider the problem of identification in a more general perspective.
Objects to be learned do not have to be sets, in particular their protocols do
not have to be order-independent. Except for sets, formal learning theory is also
concerned, for example, with learnability of functions (see Section 2.1.3). Possible
realities can even be more general, they can be classes of functions (scenarios of
this kind are at the heart of many inductive inference games, as the card game
Eleusis, see, e.g., Romesburg, 1978). Then the worlds can be identified with
protocols that allow certain sequences of events that can be defined by some
logical formula. In particular, events might be assumed to occur in a certain order.
Let us consider the following example.

Example 5.2.20. Let us take two possible worlds: w1 and w2 such that:

1. the protocol for w1 allows all infinite sequences that contain all even numbers,
and additionally require that whenever a number is 8 then the successor
should be 10;

2. the protocol for w2 allows all infinite sequences that contain all even numbers,
and additionally require that whenever a number is 8 then the successor
should be 6.

As long as the learner receives even numbers different than 10 he cannot distinguish
between the two states, e.g., the two sequences, h, h′, are in both protocols:

• h : 2, 4, 6, 8

• h′ : 4, 2, 6, 8

Therefore, we can say that whichever of the two is enumerated, w1 ∼ w2. However,
complementing both of them with the same event, 10, leads to ‘a miracle’—two
hypotheses get to be distinguished.

In principle, there is no reason why such ‘miraculous’ classes of hypotheses
should be excluded from learnability considerations. Such cases show a strength of
the protocol based temporal approach over the one-step simple DEL update. The
latter is well-suited for set learning, because set-learning protocols are permutation
closed and in this sense they are reducible to the precondition check. This is
why we turned to a more liberal setting of epistemic temporal logic in which
the ‘miracle’ of order-dependence is possible. What we observed is that with a
protocol we can obtain not only factual, but also genuine ‘procedural information’
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in the model. Therefore, sometimes we can distinguish between hypotheses not
because a new fact comes in, but because of the way in which it comes in.

In general, thinking about learnability in terms of protocols leads to a setting
in which the possible realities are identified with sets of scenarios of what should
be expected to happen in the future. In this sense, the most general realities are
sets—they allow any possible enumeration of their content. Functions allow only
one particular sequence of events. In between there are a variety of possibilities
for defining protocols that can be characterized in an arbitrary way. In general,
our results in the previous sections are only the beginning of the logical study of
the richness of possible learning protocols.

5.3 Conclusions and Perspectives

Our work provides a translation of scenarios from formal learning theory into the
domain of dynamic epistemic logic and epistemic temporal logic. In particular,
we characterized the process of identification in the syntax of dynamic doxastic
epistemic logic. Moreover, in the more general context of learnability of protocols,
we characterized learning in the syntax of a doxastic epistemic temporal language.
Hence, we showed that the proposal of expressing learnability in languages of
modal-temporal logics of knowledge and belief (see Van Benthem, 2010) can be
made precise.

Our results again show that the two prominent approaches, learning theory
and epistemic modal-temporal logics, can be joined together in order to describe
the notions of belief and knowledge involved in inductive inference. We believe
that bridging the two approaches benefits both sides. For formal learning theory,
to create a logic for it is to provide additional syntactic insight into the process of
inductive learning. For logics of epistemic and doxastic change, it enriches their
present scope with different learning scenarios, i.e., not only those based on the
incorporation of new data but also on generalization.

Moreover, as we indicated in the last section of this chapter the temporal
logic based approach to inductive inference gives a straightforward framework for
analyzing various domains of learning on a common ground. In terms of protocols,
sets can be seen as classes of specific histories—their permutation-closed complete
enumerations. Functions, on the other hand, can be seen as ‘realities’ that allow
only one particular infinite sequence of events. We can think of many intermediate
concepts that may be the object of learning. Interestingly, the identification of
protocols, that seems to be a generalization of the set-learning paradigm provides
what has been the original motivation for epistemic temporal logic from the start:
identifying the current history that the agent is in, including its order of events,
repetitions, and other constraints.

Further directions include extending our approach to other types of identifi-
cation, e.g., identification of functions; finding a modal framework for learning
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from both positive and negative information; studying systematically the effects of
different restrictions on protocols. We are also interested in investigating various
constraints one can enforce on learning functions (e.g., consistency, conservatism
or set-drivenness) and comparing them to those of epistemic and doxastic agents
in doxastic epistemic temporal logics. Modal logics of belief change are a natural
framework to study a variety of notions that underly such concepts of learnability.
Another important restriction on learning functions is computability. In the next
chapter we will be concerned with computable learning functions in the case of
finite identification—the convergence to irrevocable knowledge.
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Learning and Computation





Chapter 6

On the Complexity of Conclusive Update

To finitely identify a language means to be able to recognize it with certainty
after receiving some (specific) finite sample of the language. Such a finite sample
that suffices for finite identification is called definite finite tell-tale set (DFTT,
for short, see Lange & Zeugmann, 1992; Mukouchi, 1992). One can interpret
such a DFTT as the collection of the most characteristic (from a certain point of
view) elements of the set. It has also a different connotation that is based on the
eliminative power of its elements. We can think of the information that is carried
by a particular sample of the language in a negative way, as showing which of the
hypotheses are inconsistent with the information that has arrived, and thereby
eliminating them. A set S is finitely identifiable if its finite subset has the power
of eliminating all possibilities under consideration which are different from S.

From the characterization of finite identifiability (Mukouchi, 1992), we know
that if a class of languages is finitely identifiable, then the identification can be
done on the basis of corresponding DFTTs, i.e., finite subsets of the original
languages that contain a sample sufficient for finite identifiability. We will call a
learner that explicitly uses some DFTTs in the process of identification a preset
learner. The name derives from the fact that such a learner is equipped with extra
information about the DFTTs prior to the identification. A number of issues
emerge when analyzing computational properties of the definite finite tell-tales
used in identification. Since DFTTs are by no means unique, it can obviously
be useful to obtain small definite tell-tales. In this context we distinguish two
notions of minimality for DFTTs. A minimal DFTT is a DFTT that cannot
be further reduced without losing its eliminative power with respect to a class
of languages. A minimal-size DFTT of a set S, is a DFTT that is one of those
which are smallest among all possible DFTTs of S. In order to investigate the
computational complexity of finding such minimal DFTTs, we will have to restrict
ourselves to finite classes of languages. Even though it is a very heavy restriction,
it creates the possibility of grasping important aspects of the complexity of finite
identification. We will next move back to more general cases and investigate
how the use of the class of all (minimal) DFTTs can influence the speed of finite
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identification.
In the previous chapters we linked the notion of finite identification with the

convergence to irrevocable knowledge. The idea of eliminating possibilities that
are inconsistent with the incoming data is essentially the same as in the concept of
update in dynamic epistemic logic (see, e.g., Van Ditmarsch et al., 2007). Presently
we discuss, given the epistemic state S, the computational complexity of:

1. deciding whether convergence to irrevocable knowledge via update is possible
(whether S is finitely identifiable);

2. given that the class is finitely identifiable, finding minimal samples that
allow eliminating uncertainty (finding minimal DFTTs);

3. given that the class is finitely identifiable, finding minimal-size samples that
allow eliminating uncertainty (finding minimal-size DFTTs).

We argue that the investigations into the complexity of finite identification give a
new perspective on the complexity of the emergence of the resulting state, the state
of full certainty, that corresponds to the K operator in S5 systems of epistemic
logic (see Chapter 2).

The computational tasks can also be interpreted as a motivation for explicitly
introducing a new actor, a teacher. Her role is to decide whether learning (given a
certain learnability condition) can be successful, and if it can be, to find and provide
to the learner minimal samples that will lead to the emergence of knowledge.
The analysis of complexity of those tasks assumes a number of conditions on the
teacher and the learner: helpfulness of the teacher and eagerness to learn of the
learner. Those are not controversial, however they constitute only one of many
possible learning and teaching attitudes (other profiles are discussed, in a different
setting, in Chapter 7).

The plan of this chapter is as follows. We first recall some relevant learnability
notions and the definition and characterization of finite identifiability. We will
introduce the notion of preset learner that performs identification on the basis
of some DFTTs, and characterize the notion using the concept of subset-driven
learning. Then we will ask the question of how difficult it is to find DFTTs of
various kinds. We present the refined notions of minimal DFTT, and minimal-size
DFTT. We show that the problem of finding a minimal-size DFTT is NP-complete,
while the problem of finding any minimal DFTT is PTIME computable. Therefore,
it can be argued that it is harder for a teacher to provide a minimal-size optimal
sample, than just any minimal sufficient information. Then we analyze the
possibility of a recursive function that explicitly provides all minimal DFTTs
of a finite language. We call the type of finite identification that requires the
existence of such a function strict preset finite identification. For the case of finite
classes of finite languages we apply a computational complexity analysis—here
finding the set of all minimal DFTTs turns out to be NP-hard. In the more
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general case of infinite classes of finite languages, we also show that there are
recursively finitely identifiable classes which are not recursively strict preset finitely
identifiable. In the end we compare finite identification with the concept of fastest
finite identification and show classes for which recursive finite identifiers exist,
but which cannot be recursively finitely identified in the fastest way. That is
so because for those classes no recursive function exists that gives access to all
minimal DFTTs for each language in the class.

6.1 Basic Definitions and Characterization

Let U ⊆ N be an infinite recursive set, we call any S ⊆ U a language. In the
general case, we will be interested in any class of languages that forms an indexed
family of recursive languages, i.e., a class C for which a computable function
f : N× U → {0, 1} exists that uniformly decides C, i.e.:

f(i, w) =

{
1 if w ∈ Si,
0 if w /∈ Si.

In large parts of this chapter we will also consider C to be {S1, S2, . . . , Sn}, a finite
class of finite sets, in which case we will use IC for the set containing indices of
sets in C, i.e., IC = {1, . . . , n}.

The notation and basic definition are as introduced in Chapter 2. We recall
those that are most important for the content of the present chapter.

Finite identifiability of a class of languages from positive data is defined by
the following chain of conditions.

Definition 6.1.1. A learning function L:

1. finitely identifies Si ∈ C on ε iff, when inductively given ε, at some point L
gives a single output i;

2. finitely identifies Si ∈ C iff it finitely identifies Si on every ε for Si;

3. finitely identifies C iff it finitely identifies every Si ∈ C.

A class C is finitely identifiable iff there is a learning function L that finitely
identifies C.

The correspondence between the learning-theoretical setting and the epistemic
framework is set to be as in Chapter 4. Namely we take U := Prop an infinite,
countable set of propositions, we call any s ⊆ Prop a possible world. A set of
possible worlds S = {s1, s2, . . .} is an epistemic state. Throughout a large part
of this chapter the epistemic states are taken to be finite. Otherwise we assume
them to be indexed families of recursive sets of propositions. Accordingly, the
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text (positive presentation) ε of si is a sound and complete infinite sequence of
propositions from Prop allowing repetitions, that are satisfied in si. For simplicity
we will continue here with the number-theoretical framework, but we would like
the reader to bear in mind that the epistemic interpretation of these results is
straightforward.

Let us recall the necessary and sufficient condition for finite identifiability
(Lange & Zeugmann, 1992; Mukouchi, 1992). It involves a modified, stronger
notion of finite tell-tale (Angluin, 1980), namely the definite finite tell-tale set.

Definition 6.1.2 (Mukouchi 1992). A set Di is a definite finite tell-tale set for
Si ∈ C if

1. Di ⊆ Si,

2. Di is finite, and

3. for any index j, if Di ⊆ Sj then Si = Sj.

Finite identifiability can be then characterized in the following way.

Theorem 6.1.3 (Mukouchi 1992). A class C is finitely identifiable from positive
data iff there is an effective procedure D : N→ P<ω(N), given by n 7→ Dn, that
on input i produces a definite finite tell-tale of Si.

In other words, each set in a finitely identifiable class contains a finite subset
that distinguishes it from all other sets in the class. Moreover, for the effective
identification it is required that there is a recursive procedure that provides such
DFTTs.

Let us first observe that if a language Si contains a DFTT, then every text for
Si enumerates all elements of this DFTT in finite time.

Proposition 6.1.4. If ε is a text for Si ∈ C and S is a finite subset of Si (in
particular a DFTT of Si), then there is an n ∈ N, such that set(ε�n) is a superset
of S.

Proof. Let us take a finite S ⊆ Si, and ε—a text for Si. Assume for contradiction
there is no n ∈ N such that set(ε�n) is a superset of S. Then that means that
there is k ∈ N such that k ∈ S ⊆ Si and for all n, εn 6= k. This contradicts the
definition of text.

Theorem 6.1.3 gives the characterization of finite identification in terms of
a recursive procedure that generates DFTTs. Below we present a new way of
tell-tale sets being given—by a decision procedure. We will call such a procedure
a dftt-function.

Definition 6.1.5. Let C be an indexed family of recursive sets. The dftt-function
for C is a recursive function fdftt : P<ω(N)× N→ {0, 1}, such that:
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1. if fdftt(S, i) = 1, then S is a DFTT of Si;

2. for every i ∈ N there is a finite S ⊆ N, such that fdftt(S, i) = 1.

A first observation about the dftt-function is that it cannot attribute two
i, j ∈ N, such that i 6= j to one finite set S .

Proposition 6.1.6. Let C be a class of languages and fdftt be a dftt-function for
C. Then there is no finite S ⊆ N such that for some i, j ∈ N, such that i 6= j and
fdftt(S, i) = 1 and fdftt(S, j) = 1.

Proof. Assume that there is a finite S ⊆ N and i, j ∈ N such that fdftt(S, j) = 1
and fdftt(S, i) = 1. Then, by definition of fdftt, S is a DFTT of both Si and Sj.
By the definition of DFTT, i = j.

Now we will show that in fact the condition given in Theorem 6.1.3 is equivalent
to the existence of such dftt-function.

Theorem 6.1.7. A class C is finitely identifiable from positive data iff there is a
dftt-function for C.

Proof. (⇒) Let us assume that C is finitely identifiable. Then, by Theorem 6.1.3
there is an effective procedure D : N→ P<ω(N), given by n 7→ Dn, that on input
i produces all elements of a definite finite tell-tale of Si. Let S ⊆ N be a finite set
and i ∈ N. We define f : P<ω(N)× N→ {0, 1} in the following way:

f(S, i) =

{
1 if Di = S;

0 otherwise.

Let us observe that f is a dftt-function for C:

1. f is recursive: given S and i the function f uses D to produce a DFTT of
Si, and then compares the obtained Di with S. Such a Di always exists by
the definition of D;

2. if f(S, i) = 1 then S is obviously a DFTT of Si;

3. for all i ∈ N there is a finite S ⊆ N such that f(S, i) = 1, by the definition
of D.

(⇐) Let us take a class C and assume that there is a dftt-function for C. Let
us take Si ∈ C. The standard text εst for Si is defined in the following way:

εst
0 = µn(n ∈ Si), and

εst
n =

{
n if n ∈ Si;
εst
n−1 otherwise.
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We define D : N → P<ω(N) in the following way: On input i, D constructs
the standard text for Si in a step by step manner. At each step n, D performs
a search for a S ⊆ set(εst�n) such that fdftt(S, i) = 1. The first one found in
this manner is taken to be Di. By Definition of fdftt and Proposition 6.1.4, D is
recursive and Di is a DFTT of Si.

We have shown that DFTTs for a finitely identifiable class can be given in
two equivalent ways. It is important to remember that fdftt may not recognize all
DFTTs of a given language, but it is guaranteed to ‘know about’ at least one.

6.2 Preset Learning

Let us now turn to our central notion of preset learning. Intuitively, a preset
learning function uses a recursive decision function, such as the dftt-function
defined in the previous section, as a guide in the process of identification.

Definition 6.2.1. Let C = {Si | i ∈ N} be a class of languages, ε—a text for
some Si ∈ C, and f : P<ω(N) × N → {0, 1} be a recursive function. A preset
learning function L based on f is defined in the following way:

L(ε�n) =


µj set(ε�n) ⊆ Sj if for that j ∃S ⊆ set(ε�n) f(S, j) = 1

& ∀k < n L(ε�k) = ↑;
↑ otherwise.

It is easy to see that on any text for a language in the class such a function
has at most one integer value. In general we will call such learning functions (at
most) once defined.

Definition 6.2.2. A learning function L is (at most) once defined on C iff for
any text ε for a language from C and n, k ∈ N such that n 6= k: L(ε�n) = ↑ or
L(ε�k) = ↑.

Proposition 6.2.3. Every preset learning function is (at most) once defined.

Proof. Let C be a class of languages. Assume that L is a preset learning function
based on recursive f , and, for contradiction, that L is not (at most) once defined
on C. Then, there is ε—a text for some Si ∈ C and `, n ∈ N such that ` 6= n,
L(ε�`) 6= ↑ and L(ε�n) 6= ↑. Assume that ` < n. Since L is total, there is an i
such that L(ε�n) = i, and so, by the definition of L, ∃S ⊆ set(ε�n) f(S, i) = 1
and ∀k < n L(ε�k) = ↑. The latter gives a contradiction with the assumption
that L(ε�`) 6= ↑.

Moreover, we can show that if for every i ∈ N, f judges at least one finite
S ⊆ Si positively then the preset learning function based on f is recursive.
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Proposition 6.2.4. Let L be a preset learning function based on f . If f satisfies
Condition 2 of Definition 6.1.5, i.e., for all i ∈ N there is a finite S ⊆ N such that
f(S, i) = 1, then L is recursive on any finitely identifiable class.

We will now show that preset learners can identify every finitely identifiable
class.

Proposition 6.2.5. If a class C is finitely identifiable then it is finitely identified
by a preset learner.

Proof. Assume that C is finitely identifiable, then by the Theorem 6.1.7, there
is a dftt-function fdftt for C. We will show that L, the recursive preset learner
based on fdftt finitely identifies C. First, let us observe that by Proposition 6.2.4,
L is recursive. By Proposition 6.2.3 we have that for any ε text for some Si ∈ C,
L is (at most) once defined. Let us take ε a text for Si ∈ C. By the definition
of text and DFTT for all j 6= i, there is no n ∈ N and no S such that S ⊆
set(ε�n) & f(S, j) = 1. By the definition of fdftt we get that ∃S ⊆ Si f(S, i) = 1,
and by Proposition 6.1.4 there ∃n, S (S ⊆ set(ε�n) & f(S, i) = 1). Take the
smallest such n. Then L(ε�n) = i.

We have shown that a preset learning function based on a dftt-function can
identify any finitely identifiable class. In the next section we will discuss some
further properties of preset learning.

Set-Drivenness and Subset-Drivenness The fact that the preset learner
based on a dftt-function is universal with respect to finite identification indicates
that for finite learning it is enough to care at each step only about the content of
the finite sequence presented so far. In particular, a preset learner only checks
whether the sequence includes a subset with certain properties. It does not pay
attention to the order of elements and repetitions. Learning functions that work
this way are called set-driven.

Definition 6.2.6 (Wexler & Cullicover 1980). Let C be an indexed family of
recursive sets. A learning function L is said to be set-driven with respect to C
iff for any two texts ε1 and ε2 for some languages in C and any two n, k ∈ N, if
set(ε1�n) = set(ε2�k), L(ε1�n) 6= ↑ and L(ε2�k) 6= ↑ (i.e., they both have a natural
number value), then L(ε1�n) = L(ε2�k).

It has been shown that set-drivenness does not restrict the power of finite
identification.1 This is different from the general case of identification in the limit,
where set-drivenness does restrict the power of identification.

1In their proof of Theorem 6.2.7, Lange & Zeugmann construct a learner very similar to our
preset learning function. We would like to thank the anonymous reviewer of The 23rd Annual
Conference of Learning Theory 2010 for pointing us in this direction.
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Theorem 6.2.7 (Lange & Zeugmann 1996). A class C is finitely identifiable if
and only if C is finitely identified by a set-driven learner.

We will show that any preset learning function based on a dftt-function is
set-driven.

Theorem 6.2.8. Let C be a class of languages, and fdftt be a dftt-function for C.
If L is a preset learning function based on fdftt, then L is set-driven with respect
to C.

Proof. Take C, fdftt and L as specified in the theorem. Assume that ε1 and ε2

are texts for some languages in C; n, k ∈ N; set(ε1�n) = set(ε2�k); L(ε1�n) 6= ↑
and L(ε2�k) 6= ↑ (they both have an integer value). Assume that L(ε1�n) = i.
Then, by the definition of L, set(ε1�n) ⊆ Si, ∃S ⊆ set(ε1�n) f(S, i) = 1 and
∀` < n L(ε1�`) = ↑. The same holds for L(ε2�k) and some j ∈ N. We have to
show that i = j.

Assume for contradiction that i 6= j. Then, since set(ε1�n) = set(ε2�k),
∃S ⊆ set(ε1�n) ⊆ set(ε2�k) f(S, i) = 1 and set(ε2�k) ⊆ Sj . This means that there
is a finite set S that is a DFTT for Si and at the same time S ⊆ Sj for some j 6= i.
This gives a contradiction with the definition of DFTT.

A stronger notion of set-drivenness is possible. Definition 6.2.6 restricts the
condition to those situations in which L gives an integer value. The alternative
concept is as follows.

Definition 6.2.9 (Wexler & Cullicover 1980). Let C be an indexed family of
recursive sets. A learning function L is said to be strongly set-driven with respect
to C iff for any two texts ε1 and ε2 for some languages in C and any two n, k ∈ N,
if set(ε1�n) = set(ε2�k), then L(ε1�n) = L(ε2�k).

The preset learner based on an fdftt for C is not strongly set-driven with
respect to C. Consider the folowing simple example. Let C = {S1 = {1, 2, 4}, S2 =
{1, 3, 4}}, and let ε1 = 〈1, 2, 4, . . .〉 and ε2 = 〈1, 4, 2 . . .〉 be two texts for S1. Let
us compare the outputs of the learning function in the two cases of the initial
segments of ε1 and ε2: L(〈1, 2, 4〉) = ↑ and L(〈1, 4, 2〉) = 1. The content of the
two sequences is the same but the outputs of L are different.

From Theorem 6.2.7 we know that set-drivenness does not restrict finite
identifiability. The notion of preset learning leads to a concept of subset-driven
learning, that is itself related to set-driven learning.2

Definition 6.2.10. Let C be an indexed family of recursive sets. A learning
function L is subset-driven with respect to C iff for any two texts ε1 and ε2 for
some languages in C, and any n, k ∈ N:

2In fact, if one considers (instead of once-defined functions) functions that keep outputting
the same value after having given a value once, then the concepts of strongly set-driven and
subset-driven coincide. This would also make the anomaly vanish that preset learners are not
strongly set-driven.
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• If L(ε1�n) =↓ and set(ε1�n) ⊆ set(ε2�k) and for all ` < k, L(ε2�`) = ↑, then
L(ε1�n) = L(ε2�k).

In other words, assume that a subset-driven learning function on an initial
segment ε�n gives an integer answer. Then if there is some other text that at
some point enumerates all elements of ε�n, and up to that point no answer was
given, then the function is bound to give the same integer answer.

Theorem 6.2.11. Let C be a class of languages, and fdftt be a dftt-function for
C. If L is a preset learning function based on fdftt, then L is subset-driven with
respect to C.

Proof. Take C, fdftt and L as specified in the theorem. Assume that ε1 and ε2 are
texts for some languages in C; L(ε1�n) =↓ and set(ε1�n) ⊆ set(ε2�k) and for all
` < k, L(ε2�`) = ↑. We have to show that then L(ε1�n) = L(ε2�k).

By the fact that L(ε1�n) =↓, we know that there is i ∈ N such that set(ε1�n) ⊆
Si and that ∃S ⊆ set(ε1�n) f(S, i) = 1. Then ∃S ⊆ set(ε1�n) ⊆ set(ε2�k) such
that f(S, i) = 1, i.e., set(ε2�k) includes a finite set S such that S is a DFTT for
Si. Hence, by the definitions of text and DFTT, set(ε2�k) ⊆ Si. Moreover, one of
the assumptions is that for all ` < k, L(ε2�`) = ↑. Therefore, L(ε2�`) = i.

The connection between subset-driven finite identifiers and preset learners is
even tighter. Every subset-driven learning function that finitely identifies a class
is a preset learner (with respect to some f).

Theorem 6.2.12. Assume C is a class of languages and C is finitely identified by
a subset-driven learning function L. Then L is a preset learner (with respect to
some f).

Proof. Let subset-driven learning function L finitely identify C. We define f in
the following way:

f(s, i) = 1 iff, for some T ⊆ S, L(T̂ ) = i.

We show that Lf , preset learner with respect to f , is equal to L.
Let us take ε a text for some language in C and take n such that for all k < n,

L(ε�k) = ↑. It is sufficient to show that in this case L(ε�n) = Lf (ε�n).
First, assume that L(ε�n) =↑. Then, since L is subset-driven, for no S ⊆

set(ε�n), L(Ŝ) 6= ↑ (otherwise L(ε�n) would have the same value). So for all
S ⊆ set(ε�n) and all i, f(S, i) = 0. Hence, Lf (ε�n) = ↑.

Next, assume that L(ε�n) = i. Then, because of the set-drivenness of L,
f(set(ε�n), i) = 1 and Lf (ε�n) = i immediately follows.

Having established the set- and subset-drivenness of preset finite identifiers,
we will now turn to investigating the complexity of finding DFTTs that govern
the preset finite identification. Until now we have focused on the availability of
any DFTT for each language from a class. Of course, a language can have many
different DFTTs. In the next section we will distinguish different types of DFTT
and discuss their usefulness for finite identification.
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6.3 Eliminative Power and Complexity

Identifiability in the limit (Gold, 1967) of a class of languages guarantees the
existence of a reliable strategy that allows for convergence to a correct hypothesis
for every language from the class. The exact moment at which a correct hypothesis
has been reached is not known and in general can be uncomputable. Things are
different for finite identifiability. Here, the learning function is allowed to answer
only once. Hence, the conjecture is based on certainty. In other words, the learner
must know that the answer she gives is true, because there is no opportunity for
a change of mind later.

Knowing that one hypothesis is true means being able to exclude all other
possibilities. In this section we define the notion of eliminative power of a piece
of information, which reflects the informative strength of data with respect to a
certain class of sets.

Definition 6.3.1. Let us take C an indexed class of recursive languages, and
x ∈

⋃
C. The eliminative power of x with respect to C is determined by a function

ElC :
⋃
C → P(N), such that:

ElC(x) = {i |x /∈ Si & Si ∈ C}.

Additionally, we will write ElC(X) for
⋃
x∈X ElC(x).

In other words, function ElC takes x and outputs the set of indices of all the
sets in C that are inconsistent with x, and therefore in the light of x they can
be “eliminated”. We can now characterize finite identifiability in terms of the
eliminative power.

Proposition 6.3.2. A set Di is a definite tell-tale set of Si ∈ C iff

1. Di ⊆ Si,

2. Di is finite, and

3. ElC(Di) = N− {i}.

Moreover, from Theorem 6.1.3 we know that finite identifiability of an indexed
family of recursive languages requires that every set in a class has a DFTT.
Formally:

Theorem 6.3.3. A class C is finitely identifiable from positive data iff there is an
effective procedure D : N→ P<ω(N), given by n 7→ Dn, that on input i produces a
finite set Di ⊆ Si, such that

ElC(Di) = N− {i}.
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6.3.1 The Complexity of Finite Identifiability Checking

As has already been mentioned in the introduction to this chapter, we aim to
analyze the computational complexity of finding DFTTs. In order to do that we
restrict ourselves to finite classes of finite sets. One may ask about the purpose of
further reduction of sets that are already finite. In fact, if a finite class of finite
sets is finitely identifiable, then each element of the class is already its own DFTT.
However, finite sets can be much larger than their DFTTs. For example, we can
take a class of the following form:

C = {Si = {2i, 2i first odd natural numbers} | i = 1, . . . , n}.

In this case reduction to the minimal information that suffices for finite identifica-
tion, 2i, makes a significant difference in the complexity of the process of learning.
The learner can simply disregard all odd numbers and wait for an even number.

Theorem 6.3.4. Checking whether a finite class of finite sets is finitely identifiable
is polynomial with respect to the number of sets in the class and the maximal
cardinality of sets in the class.

Proof. The procedure consists of computing ElC(x) and checking whether for each
Si ∈ C, El(Si) = IC − {i}, where IC = {i | Si ∈ C}.

Let us first focus on computing ElC(x) for x ∈
⋃
C. We take a class C and

assume that |C| = m, and that the largest set in C has n elements.
In the first steps we have to obtain

⋃
C. After this, we list for each element of⋃

C the indices of the sets to which the element does not belong. In this step we
have computed ElC(x) for each x ∈

⋃
C. All components of this procedure can

clearly be performed in polynomial time with respect to m and n. It remains to
check whether for all Si ∈ C,

⋃
x∈Si ElC(x) = IC − {i}. This involves essentially

only the operation of sum.

From this analysis we conclude that checking whether a finite class of finite
sets is finitely identifiable is a quite easy, polynomial task. Nevertheless, as we
saw in the example in the beginning of this section, it can be time consuming if n
and m are large numbers.

6.3.2 Minimal Definite Finite Tell-Tale

We are now ready to introduce one of the two nonequivalent notions of minimality
of the DFTTs. We will call Di a minimal DFTT of Si in C if and only if all
the elements of the sets in Di are essential for finite identification of Si in C, i.e.,
taking an element out of the set Di will decrease its eliminative power with respect
to C, and hence it will no longer be a DFTT. We will observe that a language can
have many minimal DFTTs of different cardinalities. This will give us a cause to
introduce another notion of minimality—minimal-size DFTT.
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Learning functions are bound to be guided by the elements that are presented
to them in texts. In order to converge quickly there is no reason for the learner
to look especially for a certain minimal or minimal-size DFTT, because those
might not appear soon enough in the text. However, being able to recognize all
minimal DFTTs can intuitively guarantee that the right answer occurs as soon
as it is objectively possible. If it is not the time of convergence but the memory
of the learner that we want to spare, having access to all minimal-size DFTTs is
obviously useful. Finding the minimal-size DFTTs can certainly be attributed to
an efficient teacher, who looks for an optimal sample that allows identification.

Definition 6.3.5. Let us take a finitely identifiable indexed family of recursive
languages C, and Si ∈ C. A minimal DFTT of Si in C is a Di ⊆ Si, such that

1. Di is a DFTT for Si in C, and

2. ∀X ⊂ Di ElC(X) 6= IC − {i}.

Theorem 6.3.6. Let C be a finitely identifiable finite class of finite sets. Finding
a minimal DFTT of Si ∈ C can be done in polynomial time.

Proof. Assume that the class C:

1. is finitely identifiable;

2. is finite;

3. consists only of finite sets.

From the assumptions 1 and 3, we know that for each Si ∈ C a DFTT exists,
in fact Si is its own DFTT.

The following procedure yields a minimal DFTT for each Si ∈ C.
We want to find a set X ⊆ Si such that

El(X) = IC − {i}, but ∀Y ⊂ X El(Y ) 6= IC − {i}.

First we set X := Si.
We look for the minimal x ∈ X such that El(X−{x}) = IC−{i}. If there is no

such element, X is the desired DFTT. If there is such an x, we set X := X − {x},
and repeat the procedure.

Let |Si| = n, where | · | stands for cardinality. The number of comparisons
needed for finding a minimal DFTT of Si in C is bounded by n2.

Example 6.3.7. Let us consider the class

C = {S1 = {1, 3, 4}, S2 = {2, 4, 5}, S3 = {1, 3, 5}, S4 = {4, 6}}.

The procedure of finding minimal DFTTs for sets in C is as follows.
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x ElC(x)

1 {2, 4}
2 {1, 3, 4}
3 {2, 4}
4 {3}
5 {1, 4}
6 {1, 2, 3}

Table 6.1: Eliminative power of the elements in
⋃
C with respect to C

set a minimal DFTT

{1, 3, 4} {3, 4}
{2, 4, 5} {4, 5}
{1, 3, 5} {3, 5}
{4, 6} {6}

Table 6.2: DFTTs of C

1. We construct a list of the elements from
⋃
C.

2. With each element x from
⋃
C we associate ElC(x) = {i |x /∈ Si}, i.e., the

set of indices of sets to which x does not belong (names of sets that are
inconsistent with x). Table 6.1 shows the result of the two first steps for C.

3. The next step is to find minimal DFTTs for every set in the class C. As an
example, let us take the first set S1 = {1, 2, 3}. We order elements of S1, and
take the first element of the ordering. Let it be 1. We compute ElC(S1−{1}),
it turns out to be {2, 3, 4}. We therefore accept the set {3, 4} as a smaller
DFTT for S1. Then we try to further reduce the obtained DFTT, by checking
the next element in the ordering, let it be 3. ElC({3, 4} − {3}) = {4} 6=
{2, 3, 4}, so 3 cannot be subtracted without loss of eliminative power. We
perform the same check for the last singleton {4}. It turns out that {3, 4}
cannot further be reduced. We give {3, 4} as a minimal DFTT of S1.3

4. We perform the same procedure for all the sets in C. As a result we get
minimal DFTTs for each Si ∈ C presented in Table 6.2.

3Checking only singletons is enough because the eliminative power of sets is defined as the
sum of the eliminative power of its elements.
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6.3.3 Minimal-Size Definite Finite Tell-Tale

Minimal DFTTs of a language include all information that is enough to exclude
other possibilities and involve no redundant data. We can use the notion of
eliminative power to construct a procedure for finding minimal-size DFTTs of
a finitely identifiable finite class of finite sets C. Minimal-size DFTTs are the
minimal DFTTs of smallest cardinality.

We assume that |C| = m. To find a DFTT of minimal size for the set Si ∈ C,
one has to perform a search through all the subsets of Si starting from singletons,
looking for the first Xi, such that El(Xi) = IC − {i}.

DFTTs of minimal size need not be unique. Which one is encountered first
depends on the manner of performing the search. Below we describe a possible
way of searching for minimal-size DFTTs on the example discussed before.

Example 6.3.8. Let us consider again the class from Example 6.3.7, namely

C = {S1 = {1, 3, 4}, S2 = {2, 4, 5}, S3 = {1, 3, 5}, S4 = {4, 6}}.

1. We construct a list of the elements from
⋃
C.

2. With each element x from
⋃
C we associate ElC(x) = {i | x /∈ Si}, i.e., the

set of hypotheses for sets to which x does not belong (names of sets that
are inconsistent with x). Table 6.1 presents the result of the two first steps
for C.

3. The next step is to find minimal-size DFTTs for every set in the class C.
As an example, let us take the first set S1 = {1, 3, 4}. We are looking for
X ⊆ S1 of minimal size, such that ElC(X) = IC − {1}.

(a) We look for {x} such that x ∈ S1 and ElC({x}) = {2, 3, 4}. There is
no such singleton.

(b) We look for {x, y} such that x, y ∈ S1 and ElC({x}) = {2, 3, 4}. There
are two such sets: {1, 4} and {3, 4}.

4. We perform the same procedure for all Si ∈ C. As a result we get minimal-
size DFTTs for each of C, the result is presented in Table 6.3.

Let us now compare the two resulting reductions of sets from C (see Table 6.4).
The case of S2 shows that the two procedures give different outcomes.

Running time Let us now analyze and discuss the running time of this proce-
dure. First we need to compute ElC(x) for

⋃
C. From the Theorem 6.3.4 we know

that it can be done in polynomial time. Now, let us approximate the number
of steps needed to find a minimal-size DFTT of a chosen set Si ∈ C. We again
assume that |C| = m, and Si has n elements. In the procedure described above we
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set minimal-size DFTTs

{1, 3, 4} {1, 4} or {3, 4}
{2, 4, 5} {2}
{1, 3, 5} {1, 5} or {3, 5}
{4, 6} {6}

Table 6.3: Minimal-size DFTTs of C

set a minimal DFTT minimal-size DFTTs

{1, 3, 4} {3, 4} {1, 4} or {3, 4}
{2, 4, 5} {4, 5} {2}
{1, 3, 5} {3, 5} {1, 5} or {3, 5}
{4, 6} {6} {6}

Table 6.4: A comparison of minimal and minimal-size DFTTs of C

performed a search through, in the worst case, all combinations from 1 to |Si|, to
find the right set X ⊆ Si, such that ElC(X) satisfies the condition of eliminating
all hypothesis but hi. So, for each set Si, the number of comparisons that have to
be performed is:

n+
n!

2!(n− 2)!
+

n!

3!(n− 3)!
+ . . .+ 1 = 2n−1

Computational Complexity It is costly to find minimal-size DFTTs. As we
have seen above, our procedure leads to a complete search through the large space
of all subsets of a language. We call this computational problem the Minimal-size
DFTT Problem, and define it formally below. In words, the problem can be
phrased as checking whether Si ∈ C has a DFTT of size k or smaller.

Definition 6.3.9 (Minimal-size DFTT Problem).

Instance A finite class of finite sets C, a set Si ∈ C, and a positive integer
k ≤ |Si|.

Question Is there a minimal DFTT Xi ⊆ Si of size ≤ k?

We are going to show that the Minimal-size DFTT Problem is NP-complete
by pointing out that it is equivalent to the Minimum Cover Problem, which is
know to be NP-complete (Karp, 1972). Let us recall it below.
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Definition 6.3.10 (Minimal Cover Problem).

Instance: Collection P of subsets of a finite set F , positive integer k ≤ |P |.

Question: Does P contain a cover for X of size k or less, i.e., a subset P ′ ⊆ P
with |P ′| ≤ k such that every element of X belongs to at least one member
of P ′?

Theorem 6.3.11. The Minimal-size DFTT Problem is NP-complete.

Proof. First, let us observe that by Theorem 6.3.3, Minimal-size DFTT Problem
is equivalent to the following Problem:

Definition 6.3.12 (Minimal-size DFTT′ Problem).

Instance: Collection {El(x) | x ∈ Si}, positive integer k ≤ |Si|.

Question: Does {El(x) | x ∈ Si} contain a cover for IC − {i} of size k or less,
i.e., a subset Yi ⊆ {El(x) | x ∈ Si} with |Yi| ≤ k such that every element of
{El(x) | x ∈ Si} belongs to at least one member of Yi?

It is easy to observe that Minimal-size DFTT′ Problem is a notational
variant of Minimum Cover Problem, i.e., we take F = IC, P = {El(x) | x ∈ Si}
(and therefore |P | = |Si|), and X = IC − {i}. Therefore Minimal-size DFTT′

Problem is NP-complete. Since the Minimal-size DFTT′ Problem is equivalent
to the Minimal-size DFTT Problem, we conclude that the Minimal-size
DFTT Problem is also NP-complete.

According the our previous considerations, the Minimal-size DFTT Problem
may have to be solved by an optimal (‘good’) teacher, who is expected to give
only relevant information to guarantee fast learning. In this sense our result shows
that the task of providing the most useful information for finite identification is
NP-complete.

6.4 Preset Learning and Fastest Learning

Let us now return to the concept of the preset learner. This concept is based on
the intuition that it is easier to identify a complicated, large finite structure or
an infinite language solely on the basis of their DFTTs, treating those as finite
symptoms of the underlying structure. In particular, the use of minimal DFTTs
and their influence on the speed of finite identification gives rise to an interesting
set of questions. A very natural one is how DFTTs can be used by such preset
learning functions. In this section we introduce the notion of fastest learner that
finitely identifies a language Si as soon as objective ‘ambiguity’ between languages
has been lifted. In other words, we will define the extreme case of a finite learner
who decides on the right language as soon as any DFTT has been enumerated.
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Let us again take a finitely identifiable class C, and Si ∈ C. Now, consider the
collection Di of all DFTTs of Si ∈ C.

Definition 6.4.1. Let C be an indexed family of recursive sets. C is finitely
identifiable in the fastest way if and only if there is a learning function L s.t.:

L(ε�n) = i iff ∃Dj
i ∈ Di D

j
i ⊆ set(ε�n) &

¬∃Dk
i ∈ Di D

k
i ⊆ set(ε�n− 1).

We will call such L a fastest learning function.

Intuitively, the fastest learner has to explicitly store all DFTTs of all languages
in the given class. Then he makes his conjectures on the basis of the occurrence
of the DFTTs in the given text. However, we do not have to provide a set of all
DFTTs of all languages explicitly. Rather, we will define them to be accessible
via a decision procedure.

Definition 6.4.2. Let C be an indexed family of recursive sets. The complete
dftt-function for C is a recursive function fc-dftt : P<ω(N)×N→ {0, 1}, such that:

1. fc-dftt(S, i) = 1 if and only if S is a DFTT of Si;

2. for every i ∈ N there is a finite S ⊆ N, such that fc-dftt(S, i) = 1.

Theorem 6.4.3. A class C is finitely identifiable in the fastest way if and only if
there is a complete dftt-function for C.

Proof. (⇒) Let us take a class C and assume that it is finitely identifiable in
the fastest way, i.e., there is a learning function L that finitely identifies C, and
satisfies the condition of Definition 6.4.1. We define f : P<ω(N)× N→ {0, 1} in
the following way:

f(S, i) =

{
1 if ∃T ⊆ S L(T̂ ) = i,

0 otherwise.

First, let us observe that f is recursive because L is recursive and there are only
finitely many T ⊆ S.

Now we have to show that f is a complete dftt-function for C. Let us observe
that for every i ∈ N there is a finite S ⊆ N, such that f(S, i) = 1. This is so
because L finitely identifies C, and so, it finitely identifies an Si ∈ C on a text
that enumerates Si in increasing order. It remains to show that:

f(S, i) = 1 iff S is a DFTT for Si.

(⇒) Assume that f(S, i) = 1, then ∃T ⊆ S L(T̂ ) = i. By the definition of
fastest learner L we have that ∃Dj

i ∈ Di D
j
i ⊆ set(T̂ ), i.e., there is a DFTT

of Si included in T and hence also in S. Since S ⊆ Si, S then has to be a
DFTT for Si as well.
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(⇐) Assume that S is a DFTT for Si and, for contradiction, that f(S, i) = 0.
Then it means that ∀T ⊆ S L(T̂ ) 6= i. Take ε any text for Si and let
ε′ := Ŝ ∗ ε. ε′ is clearly a text for Si, but L is not the fastest learner on ε′.
Contradiction.

(⇐) Assume that there is a complete dftt-function, fc-dftt, for C. We define L
to be the preset learning function based on fc-dftt. Then, by Proposition 6.2.5 L
finitely identifies C. We have to show that L is the fastest learner, i.e., for any
Si ∈ C and any text ε for Si:

L(ε�n) = i iff ∃Dj
i ∈ Di D

j
i ⊆ set(ε�n) &

¬∃Dk
i ∈ Di D

k
i ⊆ set(ε�n− 1).

(⇒) Assume that L(ε�n) = i and, for contradiction, that the right-hand
side of the above equivalence does not hold. Then there are two possibilities.

1. ∀Dj
i ∈ Di D

j
i * set(ε�n). But then from the assumption that L(ε�n) = i,

by the definition of L we have also that set(ε�n) ⊆ Si and ∃S ⊆ set(ε�n)
such that fc-dftt(S, i) = 1. Hence, by the definition of fc-dftt, S is a DFTT of
Si and S ⊆ set(ε�n). Contradiction.

2. ∃Dk
i ∈ Di D

k
i ⊆ set(ε�n − 1). Since L(ε�n) = i, by the definition of L we

have that ∀` < n L(ε�`) = ↑ and hence (a) ∀` < n−1 L(ε�`) = ↑. Moreover,
by the definition of fc-dftt, (b) fc-dftt(set(ε�n−1), i) = 1 and by the definition
of DFTT, (c) set(ε�n− 1) ⊆ Si. From (a), (b) and (c) we can conclude that
L(ε�n− 1) = i. This contradicts the fact that L is (at most) once defined.

(⇐) Assume that for ε a text for Si ∈ C and n ∈ N the following holds:

∃Dj
i ∈ Di Dj

i ⊆ set(ε�n) & (1)

¬∃Dk
i ∈ Di Dk

i ⊆ set(ε�n− 1) (2)

Then, by (2), for all k < n there is no S such that S ⊆ set(ε�k) and
f(S, i) = 1. Hence, by the definition of L for all k < n, L(ε�k) 6= i. Since ε
is a text for Si it can not enumerate any DFTT of some different set in C,
hence we have that for all k < n, L(ε�k) = ↑. By (1) and the definition of
fc-dftt we get that ∃S ⊆ set(ε�n) fc-dftt(S, i) = 1. So, L(ε�n) = i.

This completes the proof.

The above theorem gives a condition of fastest finite identifiability. For any
finite set and i ∈ N, the function f decides whether S is a DFTT of Si. In other
words, the class of all DFTTs of C, {Di | Si ∈ C}, is uniformly decidable. In
fact, the function that the fastest preset learner uses does not have to give a
positive answer every time it sees a DFTT, it is enough if the function signals the
occurrence of every minimal DFTT.
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Definition 6.4.4. Let C be an indexed family of recursive sets. The min dftt-
function for C is a recursive function fmin-dftt : P<ω(N)× N→ {0, 1}, such that:

1. fmin-dftt(S, i) = 1 if and only if S is a minimal DFTT of Si;

2. for every i ∈ N there is a finite S ⊆ N, such that fmin-dftt(S, i) = 1.

Theorem 6.4.5. A class C is finitely identifiable in the fastest way iff there is a
min-dftt-function for C.

Proof. (⇒) Assume that a class C is finitely identifiable in the fastest way. Then,
by Theorem 6.4.3, there is an effective function fc-dftt : P<ω(N)×N→ {0, 1} such
that fc-dftt(S, i) = 1 iff S is a DFTT for Si and for every i ∈ N there is a finite set
S ⊆ N such that fc-dftt(S, i) = 1.

We define fmin-dftt : P<ω(N)× N→ {0, 1} in the following way:

fmin-dftt(S, i) =

{
1 if fc-dftt(S, i) = 1 & ¬∃T ⊂ S fc-dftt(T, i) = 1,

0 otherwise.

The function fmin-dftt is recursive, because S is finite and fc-dftt is recursive.
(⇒) Assume that there is an effective function fmin-dftt : P<ω(N) × N → {0, 1}
such that fmin-dftt(S, i) = 1 iff S is a minimal DFTT for Si and for every i ∈ N
there is a finite set S ⊆ N such that fmin-dftt(S, i) = 1.

We define fc-dftt : P<ω(N)× N→ {0, 1} in the following way:

fc-dftt(S, i) =

{
1 if ∃T ⊆ S fmin-dftt(T, i) = 1,

0 otherwise.

The function fc-dftt is recursive, because S is finite and fmin-dftt is recursive.

6.4.1 Strict Preset Learning

The reader may have expected a stronger notion of preset learner for which a
recursive function F exists such that that for each Si, F (i) is a finite set of DFTTs
for Si. As announced before we will now be interested in learners that have
at their direct disposal all minimal DFTTs of languages from the given class.
Obviously, such a situation is only generally possible in the case of classes of finite
languages. We will consider both possibilities: the one of finite classes of finite
languages and that of infinite classes of finite languages. We define strict preset
finite identifiability in the following way.

Definition 6.4.6. A finitely identifiable class C is strict preset finitely identifiable
iff there is a recursive function F : N→ P<ω(N) such that F (i) outputs the set of
all minimal DFTTs of Si.
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Computational Complexity of Strict Preset Learning Let us again go
back to the case of a finite class of finite sets. To compute the set min-Di of all
minimal DFTTs of Si ∈ C we need to perform the procedure for finding a minimal
DFTT for all possible orderings of elements in Si. Therefore the simple procedure
described earlier (in Section 6.3.2) has to be performed n! times. This indicates
that finding the set of all minimal DFTTs is in general quite costly. We show that
in fact the problem is NP-hard.

Proposition 6.4.7. Finding min-Di of Si ∈ C is NP-hard.

Proof. It is easy to observe that once we enumerate Di of Si, we can find a
minimal-size DFTT of Si in polynomial time by simply picking one of the smallest
sets in Di. This means that the Minimal-size DFTT Problem for Si can be
polynomially reduced to the problem of finding Di for Si.

We will now move to the case of infinite classes of finite sets. We will compare
the two notions: strict preset learning and fastest learning in the more general
setting of recursive sets. We will proceed with a number of examples. First we
will show that there are classes that are finitely identifiable both in the fastest
and in the preset way, but that are not strict preset finitely identifiable.

In the following we will use the manner of speech where we will say that e is a
Turing machine if we mean that e is an integer that codes a Turing machine and
f(a) = {b, c} will mean that f(a) codes the finite set containing just b and c. Let
us recall the notion of Kleene’s T -predicate.

Definition 6.4.8 (T -predicate (Kleene, 1943)). T (e, x, y) holds iff e is a Turing
machine that on input x performs computation y.

Let us recall that with the use of the T -predicate the Halting Problem can be
defined in the following way:

∃yT (e, e, y) ⇐⇒ ϕe(e) ↓ .

In other words, the question of whether Turing machine e stops on the input e
is equivalent to the question of existence of a computation y performed by e on
input e.

Let us start with an example of a finitely identifiable class for which a recursive
preset learner exists, but which is not strict preset finitely identifiable.

Theorem 6.4.9. There exists a class C that is finitely identifiable, but for which
no recursive function F exists such that for each i, F (i) is the set of all minimal
DFTTs for Si.

Proof. Let us consider the following class of finite sets C = {Si | i ∈ N}:

Si = {2i, 2(µyT (i, i, y)) + 1}.
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Obviously, the class C is finitely identifiable. Moreover there exists a recursive
fastest learner L that finitely identifies C and can be defined in the following way:

L(ε�n) =

{
i if 2i ∈ set(ε�n),

µ` T (`, `, k) if 2k + 1 ∈ set(ε�n).

We can easily observe that |Si| = 2 ⇐⇒ ϕi(i) ↓. Minimal DFTTs of Si are
{2i}, and, in case ϕi(i) ↓, also {2(µyT (i, i, y)) + 1}}. It is clear that no total
recursive function F such that

g(i) = {{2i}, {2(µyT (i, i, y)) + 1}}

can be given, because its existence would solve the Halting Problem.

Therefore, the strict preset learner for the above class cannot be recursive.
Since the recursive fastest learner exists (defined in the proof above), the fastest
learner cannot be strict preset. Hence, we can conclude that even in the case of
classes of finite languages strict preset finite identification is properly included
in finite identification and in fastest finite identification. A similar result can be
shown for the minimal-size strict preset finite identifiability, i.e., when the learning
function requires the set of all the minimal-size DFTTs.

Proposition 6.4.10. There exists a class C that is finitely identifiable, but for
which no recursive function F exists such that for each i, F (i) is the set of all
minimal-size DFTTs for Si.

Proof. The argument is analogous to the one given in the proof of Theorem 6.4.9.
Let j : N2 → N be a recursive pairing function (bijection) with inverses j1 and j2.
We now consider the class C = {Si | i ∈ C}:

Si = {3j1(i), 3j2(i) + 1, 3(µyT (i, i, y)) + 2}.

The set of all minimal-size DFTTs of Si is {{3(µyT (i, i, y)) + 2}} in case ϕi(i) ↓
and {{3j1(i)}, {3j2(i) + 1}} in case ϕi(i)↑. Therefore the minimal-size DFTTs of
Si cannot be given by a total recursive function, because its existence would solve
the Halting Problem.

6.4.2 Finite Learning and Fastest Learning

We have established that recursive fastest identifiability does not require strict
preset learnability even in the finite cases. We will now turn to the more general
question whether every finitely identifiable class has a fastest learner. The answer
is negative—there are finitely identifiable classes of languages which cannot be
finitely identified in the fastest way.
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Definition 6.4.11 (Smullyan 1958). Let A,B ⊂ N. A separating set is C ⊂ N
such that A ⊂ C and B ∩ C = ∅. In particular, if A and B are disjoint then A
itself is a separating set for the pair, as is B. If a pair of disjoint sets A and B
has no computable separating set, then the two sets are recursively inseparable.

The following theorem says that there are effectively finitely identifiable classes
of languages for which there is no effective fastest learner and no recursive function
that could enumerate a minimal DFTT for each language.

Theorem 6.4.12. There exists a class C that is finitely identifiable but is not
finitely identifiable in the fastest way (and moreover there is no recursive function
that gives a minimal-size DFTT for each language).

Proof. Let A and B be two disjoint r.e. recursively inseparable sets. Let x ∈ A
be equivalent to ∃y Rxy with R recursive and let x ∈ B be equivalent to ∃y Sxy
with S recursive. We assume that for each x there is at most one y such that Rxy
and at most one y such that Sxy.

The class of languages {Si | i ∈ N} is defined as follows:

Si = {2i, 2i+ 1} ∪ {2j | Rji} ∪ {2j + 1 | Sji}.

The idea is that {2i, 2i+ 1} is the exclusive domain of Si except that, for some
usually much larger m, Rim or Sim may be true, and then 2i ∈ Sm or 2i+1 ∈ Sm,
respectively. There can be at most one such m, and for that m only one of Rim
or Sim can be true. However, since A and B are recursively inseparable there can
be no recursive function f that makes this latter choice for each i.

It is clear that to decide definitely that the language is Si it suffices to encounter
2i and 2i + 1, so {2i, 2i + 1} is a DFTT for Si. But, if i ∈ A, then {2i + 1} is
a DFTT for Si, and if i ∈ B, then {2i} is a DFTT for Si. To be more precise,
{2i + 1} is a DFTT for Si if i 6∈ B and {2i} is a DFTT for Si if i 6∈ A. But no
recursive learner can decide on this, so there cannot be a recursive fastest learner,
or a function that gives, for each i, a minimal DFTT for Si.

In general there is no reason for preset learners to use only minimal DFTTs.
They can have a set of DFTTs for each Si and only use those. The class given in
the proof of Theorem 6.4.12, for which no recursive fastest learner is possible can
obviously have a preset learner but the DFTTs do not include the minimal ones.

The above theorem shows that fastest finite identifiability is properly included
in finite identification and hence also in preset finite identification. Hence, we have
shown the existence of yet another kind of learning, even more demanding than
finite identification. Speaking in terms of conclusive update, our considerations
show that in some cases, even if computable convergence to certainty is possible,
it is not computable to conclude that at the first moment in which objective
ambiguity disappears.
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In the light of these discoveries about preset learning, we can give a compu-
tational justification for introducing multi-agency to this setting. It seems to
be justifiable to switch the perspective from the single agent, learning-oriented
view, to the two agent game of learner and teacher. The responsibility of effective
learning, in the line with natural intuitions, is in the hands of the teacher, whose
computational task is to find samples of information that guarantee optimal
learning. Intuitively, it is not very surprising that the task of finding such minimal
samples can be more difficult than the complexity of the actual learning. As
such, computing the minimal(-size) DFTTs seems to go beyond the abilities of
the learner and is not necessary in order to be rational or successful. However,
such a task is natural to be performed by a teacher.

6.5 Conclusions and Perspectives

We used the characterization of finite identification of languages from positive
data to discuss the complexity of optimal learning and teaching strategies in
finite identification. We introduced two notions: minimal DFTT and minimal-size
DFTT. By viewing the informativeness of examples as their power to eliminate
certain conjectures, we have checked the computational complexity of ‘finite
teachability’ from minimal DFTT and minimal-size DFTT. In the former case
the problem turns out to be PTIME computable, while the latter falls into the
NP-complete class of problems. This suggests that it is easy to teach in a way
that avoids irrelevant information but it is potentially difficult to teach in the
most effective way. We also conceptually extended the characterization of finite
identification and introduced the notion of preset learner. We compared variations
of the latter with the idea of fastest finite identification. In particular, we focused
on the notion of strict preset finite identifiers that have at their disposal all minimal
DFTTs of every language in the class. Even in the setting of classes of finite sets
this type of learning turns out to be restrictive with respect to finite identifiability.
We have exhibited a recursively finitely identifiable class that cannot be recursively
finitely identifiable in the fastest way. Hence we have established a new more
restrictive kind of finite identification.

Links between finite identification and dynamic epistemic logic have already
been established and described in Chapters 3–5. For dynamic epistemic logic the
restriction to finite sets of finite languages is very natural, so our analysis of its
complexity can be applied to strengthen this connection. The complexity of fastest
finite identification corresponds to the complexity of fastest conclusive update in
dynamic epistemic logic. It gives a new measure of computational complexity of
certainty— a measure that corresponds to the question of how difficult it is to
reach the state of irrevocable knowledge.

The main assumptions of learning theory and hence also of the present chapter
is the cooperative nature of the interaction between the learner and the teacher.
In the next chapter we will reflect upon other possible learning attitudes.





Chapter 7

Supervision and Learning Attitudes

In philosophy, logic and psychology the word ‘learning’ is used to denote a variety
of phenomena. In this chapter, as in the previous ones, we take the phrase ‘to
learn’ to mean ‘to acquire information in order to arrive at a certain (correct)
conclusion’. In this we follow the lines of learning theory (see, e.g., Jain et al.,
1999) where learning consists of a sequence of mind changes that should lead to
a correct conclusion. All belief states visited on the way there, together with
the correct one, are drawn from some given set of possibilities that constitutes
the initial uncertainty range. To be more specific, let us try to describe in those
terms the process of language learning. Agent L’s (Learner’s) aim is to ‘arrive’
at a grammar that correctly describes his native language. This scenario can be
represented by a graph in which the vertices represent possible grammars and
an edge from vertex s1 to vertex s2 labeled with α stands for a possibility of a
mind change from grammar s1 to s2 that is triggered by the incoming information
α. The properties of such a graph are determined by features of the initial range
of possibilities, the language being learned, and the nature of agent’s learning
strategy. Then, the process of learning can be represented simply as a ‘journey’
of L through the graph until he finally reaches the correct grammar. Obviously,
other inductive inference processes can also be described in this way.

The setting can be enriched by the presence of another agent, let us call
her Teacher, T , who decides which data are presented to L, in which order, etc.
In other words, we can introduce another player who supervises the process of
learning and manipulates the data in order to influence the speed and accuracy of
convergence. The analysis of the role of the teacher has been increasingly present
in formal learning theory (e.g., see Angluin, 1987 for the minimally adequate
teacher in learning from queries and counterexamples, and Balbach & Zeugmann,
2009 for recent developments in teachability theory).

In this chapter, we investigate the interaction between Learner and Teacher in
a particular kind of supervision learning game that is played on a graph. Learner’s
information state changes while he moves around the graph, from one conjecture
to another. Teacher, having a global perspective, knows the structure of the
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graph, and by providing certain information eliminates some initially possible
mind changes of L. We are interested in the complexity of teaching, which we
interpret in a similar way as in Chapter 6. Assuming the global perspective of
Teacher, we identify the teachability problem with deciding whether the success
of the learning process is possible. We interpret learning as a game and hence we
identify learnability and teachability with the existence of winning strategies in a
certain type of game. In this context, we analyze different Learner and Teacher
attitudes, varying the level of Teacher’s helpfulness and Learner’s willingness to
learn.

We interpret our learning game within the existing framework of sabotage games
(Van Benthem, 2005). We start by recalling sabotage games and sabotage modal
logic. Then, we explore variations of the winning condition of the game, providing
sabotage modal logic formulae that characterize the existence of a winning strategy
and their model-checking complexity (in other words: the complexity of deciding
whether a player has a winning strategy in the game) in each case. Then we
observe the asymmetry of the players’ roles, and we allow Teacher to skip moves
and we analyze how such removal of strict alternation of the moves affects our
previous results. Finally, we recapitulate the work and discuss possible extensions.

With respect to the previous chapter, which also deals with computational
complexity of teaching, we will now, in a way, take a step back. We will lose the
detailed view on the content of epistemic states. Instead, we will gain the global
picture of the process on conjecture change, and will be able to see the influence
of intentional attitudes on the complexity of teaching.

7.1 Sabotage Games

As we already mentioned, our perspective on learning leads naturally to the frame-
work of sabotage games. Sabotage games are useful for reasoning about various
interactive processes involving random breakdowns or intentional obstruction in a
system, from the failures of server networks to the logistics of traveling by public
transport. We argue that it can also be interpreted positively, as some form of
learning. But before we get to that, we first introduce the general, basic framework
of sabotage games.

A sabotage game is played in a directed multi-graph, with two players, Runner
and Blocker, moving in alternation, with Runner moving first. Runner moves by
making a single transition from the current vertex. Blocker moves by deleting any
edge from the graph. Runner wins the game if he is able to reach a designated
goal vertex; otherwise Blocker wins.

To define the game formally let us first introduce the structure in which
sabotage games take place, a directed multi-graph (see, e.g., Balakrishnan, 1997).
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Definition 7.1.1. A directed multi-graph is a pair G = (V,E) where V is a
set of vertices and E : V × V → N is a function indicating the number of edges
between any two vertices.

The sabotage game is defined in the following way.

Definition 7.1.2 (Löding & Rohde 2003a). A sabotage game

SG = 〈V,E, v, vg〉

is given by a directed multi-graph (V,E) and two vertices v, vg ∈ V . Vertex v
represents the initial position of Runner and vg represents the goal state (the aim
of Runner).

Each match consists of a sequence of positions and is played as follows:

1. the initial position 〈E0, v0〉 is given by 〈E, v〉;

2. round k + 1 from position 〈Ek, vk〉 consists of:

(a) Runner moving to some vk+1 such that E(vk, vk+1) > 0, and then

(b) Blocker removing an edge (v, v′) such that Ek(v, v
′) > 0.

The new position is 〈Ek+1, vk+1〉, where Ek+1(v, v′) := Ek(v, v
′)− 1 and, for

every (u, u′) 6= (v, v′), Ek+1(u, u′) := Ek(u, u
′);

3. the match ends if a player cannot make a move or if Learner reaches the
goal state, which is the only case in which he wins.

In other words, Blocker removes an edge between two states v, v′ by decreasing
the value of E(v, v′) by 1. As we will see later, this description of the game based
on the above definition of multi-graphs can lead to some technical problems when
we want to interpret modal logic over these structures. Therefore, we will now
present an alternative definition, which we later show to be equivalent with respect
to the existence of a winning strategy1.

Definition 7.1.3. Let Σ = {a1, . . . an} be a finite set of labels. A directed
labeled multi-graph is a tuple GΣ = (V, E) where V is a set of vertices and
E = (Ea1 , . . . , Ean) is a collection of binary relations Eai ⊆ V × V for each ai ∈ Σ.

In the above definition, the labels from Σ are used to represent multiple edges
between two vertices; E is simply an ordered collection of binary relations on V
with labels drawn from Σ. Accordingly, the modified definition of sabotage game
is as follows.

1In what follows we take the size of any multi-graph G = (V,E) to be bounded by: |V |+
max{E(v, w) | v, w ∈ V } · |V 2|.
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Definition 7.1.4. A labeled sabotage game

SGΣ = 〈V, E , v, vg〉

is given by a directed labeled multi-graph (V, E) and two vertices v, vg ∈ V . Vertex
v represents the initial position of Runner and vg represents the goal state.2

Each match is played as follows:

1. the initial position 〈E0, v0〉 is given by 〈E , v〉;

2. round k + 1 from position 〈Ek, vk〉 with Ek = (Eka1 , . . . , E
k
an), consists of:

(a) Runner moving to some vk+1 such that (vk, vk+1) ∈ Ekai for some ai ∈ Σ,
and then

(b) Blocker removing an edge (v, v′) with label aj ((v, v′) ∈ Ekaj) for some
aj ∈ Σ.

The new position is 〈Ek+1, vk+1〉, where Ek+1
aj

:= Ekaj − {(v, v
′)} and Ek+1

ai
:=

Ekai for all i 6= j;

3. The match ends if a player cannot make a move or if Runner reaches the
goal state, which is the only case in which he wins.

It is easy to see that both versions of sabotage games have the history-free
determinacy property : if one of the players has a winning strategy then (s)he
has a winning strategy that depends only on the current position. Then, each
round can be viewed as a transition from a sabotage game SGΣ = 〈V, Ek, vk, vg〉 to
another sabotage game SG′

Σ = 〈V, Ek+1, vk+1, vg〉, since all previous moves become
irrelevant. We will use this fact through the whole paper.

It is easy to see that in labeled sabotage games, the label of the edge removed
by Blocker is irrelevant with respect to the existence of a winning strategy. What
matters is the number of edges that is left.

Observation 7.1.5. Let SGΣ = 〈V, E , v0, vg〉 and SG′Σ = 〈V, E ′, v0, vg〉 be two
labeled sabotage games that differ only in the labels of their edges, that is,

for all (v, v′) ∈ V × V, |{Eai | (v, v′) ∈ Eai}| = |{E ′ai | (v, v′) ∈ E ′ai}|,

where | · | stands for cardinality. Then Runner has a winning strategy in SGΣ iff
he has a wining strategy in SG′Σ.

The existing results on sabotage have been given for the non-labeled version of
the game. In what follows we show that the problems of deciding whether Runner
has a winning strategy in sabotage games SG and SGΣ are polynomially equivalent.

2We will sometimes talk about edges and vertices of SGΣ = 〈V, E , v, vg〉, meaning edges and
vertices of its underlying directed (labeled) multi-graph (V, E).
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By doing this we establish that our modification of the definition makes only a
slight difference and that the previous contribution is valid for our notion. We
start by formalizing the two problems.

Definition 7.1.6 (Sabotage Decision Problem).

Instance Sabotage game SG = 〈V,E, v0, vg〉.

Question Does Runner have a winning strategy in SG?

The Σ-Sabotage Decision Problem is very similar. The only difference is
that it is concerned with slightly modified structures — labeled sabotage games.

Definition 7.1.7 (Σ-Sabotage Decision Problem).

Instance Labeled sabotage game SGΣ = 〈V, E , v0, vg〉.

Question Does Runner have a winning strategy in SGΣ?

Theorem 7.1.8. Sabotage and Σ-Sabotage are polynomially equivalent.

Proof. The two problems can be polynomially reduced to each other.

(⇒) Sabotage can be reduced to Σ-Sabotage. Given a sabotage game SG =
〈V,E, v0, vg〉, let m be the maximal number of edges between any two vertices in
the graph, i.e.:

m := max{E(u, u′) | (u, u′) ∈ (V × V )}.

Then, we define the labeled sabotage game f(SG) := 〈V, E , v0, vg〉, where E :=
(E1, . . . , Em) and each Ei is given by Ei := {(u, u′) ∈ V × V | E(u, u′) ≥ i}.

We have to show that Runner has a winning strategy in SG iff he has one
in f(SG). The proof is by induction on n — the number of edges in SG, i.e.,
n =

∑
(v,v′)∈V×V E(v, v′). Note that by definition of f , f(SG) has the same number

of edges, i.e., n =
∑i=m

i=1 |Ei|.
The base case
Straightforward. In both games Runner has a winning strategy iff v0 = vg.

The inductive case
(⇒) Suppose that Runner has a winning strategy in the game SG = 〈V,E, v0, vg〉

with n+ 1 edges. Then, there is some v1 ∈ V such that E(v0, v1) > 0 and Runner
has a winning strategy for all games SG′ = 〈V,E ′, v1, vg〉 that result from Blocker
removing any edge (u, u′) with E(u, u′) > 0. Note that all such games SG′ have
just n edges, so by the induction hypothesis Runner has a winning strategy in
f(SG′). But then, by Observation 7.1.5, Runner also has a winning strategy in all
games f(SG)′ that result from removing an arbitrary edge from f(SG). This is so
because for any removed edge (u, u′), the only possible difference between f(SG′)
and f(SG)′ is in the labels of the edges between u and u′ (in f(SG′) the removed
label was the largest, in f(SG)′ the removed label is arbitrary). Now, by definition
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of f , choosing v1 is also a legal move for Runner in f(SG) and, since he can win
every f(SG)′, he has a winning strategy in f(SG).

(⇐) Runner having a winning strategy in f(SG) means that he can choose
some v1 with (v0, v1) ∈ Ei for some i ≤ m such that he has a winning strategy in
all games f(SG)′ resulting from Blocker’s move. Choosing v1 is also a legal move
of Runner in SG. Suppose that Blocker replies by choosing (v, v′). Let us call
the resulting game SG′. By assumption and Observation 7.1.5, Runner also has
a winning strategy in the game f(SG′) which is the result from Blocker choosing
((v, v′), E(v, v′)). Since f(SG)′ = f(SG′), we can apply the inductive hypothesis.

(⇐) Σ-Sabotage can be reduced to Sabotage. Given a labeled sabotage game
SGΣ = 〈V, E , v, vg〉 with Σ = {a1, . . . am}, define the sabotage game f ′(SGΣ) :=
〈V,E, v, vg〉, where E(v, v′) := |{Eai | (v, v′) ∈ Eai}|.

Showing that Runner has a winning strategy in SGΣ iff he has one in f(SGΣ)
is straightforward, and can be done by induction on the number of edges in SGΣ,
i.e., on n :=

∑
a∈Σ |Ea|.

Finally, let us observe that both f and f ′ that encode the procedures of
transforming one type of graph to another, are polynomial, so the proof is complete.

7.2 Sabotage Modal Logic

Sabotage modal logic (SML) has been introduced by Van Benthem (2005) to
investigate the complexity of reachability-type problems in dynamic structures,
such as the graph of our sabotage games. Besides the standard modalities, it
also contains ‘transition-deleting’ modalities for reasoning about model change
that occurs when a transition (an edge) is removed. To be more precise, we have
formulae of the form ♦ϕ, expressing that it is possible to delete a pair from the
accessibility relation such that ϕ holds in the resulting model at the current state.

Definition 7.2.1 (SML Language; Syntax). Let Prop be a countable set of
propositional letters and let Σ be a finite set of labels. Formulae of the language
of sabotage modal logic are given by:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | ♦aϕ | ♦aϕ

with p ∈ Prop and a ∈ Σ. The formula �aϕ is defined as ¬♦a¬ϕ, and we will
write ♦ϕ for

∨
a∈Σ ♦aϕ and ♦ϕ for

∨
a∈Σ ♦aϕ.

The sabotage modal language is interpreted over Kripke models, that are here
called sabotage models.

Definition 7.2.2 (Löding & Rohde 2003b). Given a countable set of propositional
letters Prop and a finite set Σ = {a1, . . . , an}, a sabotage model is a tuple
M = 〈W, (Rai)ai∈Σ,Val〉 where W is a non-empty set of worlds, each Rai ⊆ W×W
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is an accessibility relation and Val : Prop→ P(W ) is a propositional valuation
function. We will call a pair (M,w) with w ∈ W a pointed sabotage model.

To get to the semantics of sabotage modal language, we first have to define
the model that results from removing an edge.

Definition 7.2.3. Let M = 〈W,Ra1 , . . . Ran ,Val〉 be a sabotage model. The model
Mai

(v,v′) that results from removing the edge (v, v′) ∈ Rai is defined as

Mai
(v,v′) := 〈W,Ra1 , . . . Rai−1

, Rai \ {(v, v′)}, Rai+1
, . . . Ran ,Val〉.

Definition 7.2.4 (SML; Semantics). Given a sabotage model

M = 〈W, (Ra)a∈Σ,Val〉

and a world w ∈ W , atomic propositions, negations, disjunctions and standard
modal formulae are interpreted as usual. For the case of ‘transition-deleting’
formulae, we have

(M,w) |= ♦aϕ iff ∃v, v′ ∈ W ((v, v′) ∈ Ra & (Ma
(v,v′), w) |= ϕ).

One SML result that is of great importance to us is the SML model checking
complexity (combined complexity model checking, see Vardi, 1982). We will use
it to reason about the difficulty of our learning scenarios.

Theorem 7.2.5 (Löding & Rohde 2003b). The computational complexity of model
checking for SML is PSPACE-complete.

7.3 Sabotage Learning Games

In this section, we reinterpret the sabotage game in the broader perspective of
learning. We introduce variants of the winning condition of the game. For each
variant, we will provide a sabotage modal logic formula characterizing the existence
of a winning strategy. We also prove complexity results for model checking in
each case. We will work with previously introduced labeled sabotage games, using
the labeling of the edges to represent different kinds of information changes that
take Learner from one state into another.

7.3.1 Three Variations

A sabotage learning game is defined as follows.

Definition 7.3.1. A sabotage learning game ( SLG) is a labeled sabotage game
between Learner ( L, taking the role of Runner) and Teacher ( T , taking the role
of Blocker). We distinguish three different versions, SLGhe, SLGhu and SLGue.
Moves allowed for both players are those of the sabotage game. There is also
no difference in the arena in which the game is played. However, the winning
conditions vary from version to version (Table 7.1).
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Game Winning Condition

SLGue L wins iff L reaches the goal state, T wins otherwise.

SLGhu T wins iff L reaches the goal state, L wins otherwise.

SLGhe L and T win iff L reaches the goal state. Both lose otherwise.

Table 7.1: Sabotage Learning Games

The different winning conditions correspond to different levels of Teacher’s
helpfulness and Learner’s willingness to learn. We can then have the cooperative
case with helpful Teacher and eager Learner (SLGhe). But there are two other
possibilities that we will be interested in: unhelpful Teacher with eager Learner
(SLGue), and helpful Teacher with unwilling Learner (SLGhu).

Having defined the games representing various types of Teacher and Learner
attitudes, we now show how sabotage modal logic can be used for reasoning about
players’ strategic powers in these games.

7.3.2 Sabotage Learning Games in Sabotage Modal Logic

Sabotage modal logic turns out to be useful for reasoning about graph-like struc-
tures where edges can disappear; in particular, it is useful for reasoning about
sabotage learning games. In order to interpret the logic on our graphs we need to
transform the arena of a labeled sabotage game into a sabotage model in which
formulae of the logic can be interpreted. In fact, for each SLG we can construct a
pointed sabotage model in the following straightforward way.

Definition 7.3.2. Let SGΣ = 〈V, E , v0, vg〉 be a sabotage game and E = (Ea)a∈Σ.
The pointed sabotage model (M(SGΣ), v0) over the set of atomic propositions
Prop := {goal} is given by

M(SGΣ) := 〈V, E ,Val〉,

where Val(goal) := {vg}.

In the light of this construction, sabotage modal logic becomes useful for
reasoning about players’ strategic powers in sabotage learning games. Each
winning condition in Table 7.1 can be expressed by a formula of SML that
characterizes the existence of a winning strategy, that is, the formula is true in
a given pointed sabotage model if and only if the corresponding player has a
winning strategy in the game represented by the model.



7.3. Sabotage Learning Games 127

Unhelpful Teacher and Eager Learner (SLGue) Let us first consider SLGue,
the original sabotage game (Van Benthem, 2005). For any n ∈ N, we define the
formula γuen inductively as follows:

γue0 := goal , γuen+1 := goal ∨ ♦ � γuen .
The following result is Theorem 7 of Löding & Rohde (2003b) rephrased for labeled
sabotage games. We provide a detailed proof to show how our labeled definition
avoids a technical issue present in the original proof.

Theorem 7.3.3. Learner has a winning strategy in the SLGue

SGΣ = 〈V, E0, v0, vg〉
if and only if (M(SGΣ), v0) |= γuen , where n is the number of edges of SGΣ.

Proof. The proof is by induction on n.

The base case
(⇒) If L has a winning strategy in a game SGΣ with no edges, then he should

be already in the winning state, that is v0 = vg. Thus, (M(SGΣ), v0) |= goal and
hence, (M(SGΣ), v0) |= γue0 .

(⇐) If (M(SGΣ), v0) |= γue0 then (M(SGΣ), v0) |= goal . Since vg is the only state
where goal holds, then we have v0 = vg, and therefore L wins SGΣ immediately.

The inductive case
(⇒) Suppose that SGΣ has n+ 1 edges, and assume L has a winning strategy.

There are two possibilities: L’s current state is the goal state (that is, v0 = vg), or
it is not.

In the first case, we get (M(SGΣ), v0) |= goal and hence (M(SGΣ), v0) |= γuen+1.
In the second case, since L has a winning strategy in SGΣ, there is some state
v1 ∈ V reachable from v0, i.e., for some ai ∈ Σ (that is, (v0, v1) ∈ E0

ai
) such that

in all games SGΣ
(u,u′),aj

= 〈V, E1
(u,u′),aj

, v1, vg〉 that result from removing edge (u, u′)

from the relation labeled aj, L as a winning strategy.3

All such games have n edges, so by inductive hypothesis we have

(M(SGΣ
(u,u′),aj

), v1) |= γuen .

for every edge (u, u′) and label aj . Now, the key observation is that each M -image
of the game that results from L moving to v1 and T removing edge (u, u′) with
label aj , is exactly the model that results from removing edge (u, u′) with aj from
the model M(SGΣ).4 Then, for all such (u, u′) and aj, we have

(M(SGΣ)
aj
(u,u′), v1) |= γuen .

3The collection E1
(u,u′),aj

is given by (E0
a1
, . . . , E0

aj
− {u, u′}, . . . , E0

a|Σ|
).

4In the original definition of a sabotage game this is not the case. In the game, the edges are
implicitly ordered by numbers (the existence of an edge labeled with k implies the existence of
edges labeled with 1, . . . , k − 1); in the model, this is not the case. When we remove an edge
from a game we always remove the one with the highest label, but when we remove an edge
from a model we remove an arbitrary one: the operations of removing an edge and turning a
game into a model do not commute.
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It follows that (M(SGΣ), v1) |= �γuen and therefore (M(SGΣ), v0) |= ♦ � γuen , that
is, (M(SGΣ), v0) |= γuen+1.

(⇐) Suppose that (M(SGΣ), v0) |= goal ∨♦� γuen . Then, v0 is the goal state or
else there is a state v1 accessible from v0 such that (M(SGΣ), v1) |= �γuen , that is,
(M(SGΣ)ai(u,u′), v1) |= γuen , for all edges (u, u′) and labels aj . By inductive hypothesis,
L has a winning strategy in each game that correspond to each pointed model
(M(SGΣ)ai(u,u′), v1). But these games are exactly those that result from removing

any edge from the game 〈V, E0, v0, vg〉 after L moves from v0 to v1. Hence, L has
a winning strategy in 〈V, E0, v0, vg〉, the game that corresponds to the pointed
model (M(SGΣ), v0), as required.

Helpful Teacher and unwilling Learner (SLGhu) Now consider SLGhu, the
game with helpful Teacher and unwilling Learner. We define γhun inductively, as

γhu0 := goal , γhun+1 := goal ∨ (♦> ∧�♦γhun ).

In this case, Teacher has to be sure that Learner does not get stuck before he has
reached the goal state — this is why the conjunct ♦> is needed in the definition
of γhun+1. We show that this formula corresponds to the existence of a winning
strategy for Teacher.

Theorem 7.3.4. Teacher has a winning strategy in the SLGhu

SGΣ = 〈V, E0, v0, vg〉
if and only if (M(SGΣ), v0) |= γhun , where n is the number of edges of SGΣ.

Proof. Similar to the proof of Theorem 7.3.3.

Helpful Teacher and eager Learner (SLGhe) Finally, for SLGhe, the corre-
sponding formula is defined as

γhe0 := goal , γhen+1 := goal ∨ ♦♦γhen .
Theorem 7.3.5. Teacher and Learner have a joint winning strategy in SLGhe

SGΣ = 〈V, E0, v0, vg〉
if and only if (M(SGΣ), v0) |= γhen , where n is the number of edges of SGΣ.

Proof. L and T have a joint winning strategy if and only if there is a path from
v0 to vg. From left to right this is obvious. From right to left, if there is such a
path, then there is also one without cycles5, and a joint winning strategy is the
one that follows the path and at each step removes the edge that has just been
used (it is essential that L moves first). The theorem follows by observing that
γhen expresses the existence of such path.

The above results for the three scenarios are summarized in Table 7.2.
5If this is not the case, i.e., if it is essential that L uses a path twice, removing used edges

could cause L to be stuck somewhere away from the goal.
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Game Winning Condition in SML Winner

SLGue γue0 := goal , γuen+1 := goal ∨ ♦ � γuen Learner

SLGhu γhu0 := goal , γhun+1 := goal ∨ (♦> ∧ (�♦γhun )) Teacher

SLGhe γhe0 := goal , γhen+1 := goal ∨ ♦♦γhen Both

Table 7.2: Winning Conditions for SLG in SML

7.3.3 Complexity of Sabotage Learning Games

We have characterized the existence of a winning strategy in our three versions of
SLGs by means of sabotage modal logic formulae. In this section, we investigate
the complexity of deciding whether such formulae are true in a given pointed
model, i.e., the complexity of checking whether there is a winning strategy in the
corresponding game.

By Theorem 7.2.5, the model checking problem of sabotage modal logic is
PSPACE-complete. This gives us PSPACE upper bounds for the complexity of
deciding whether a player can win a given game. In the three cases, we can also
give tight lower bounds.

Unhelpful Teacher and eager Learner (SLGue) For SLGue, which can be
identified with the standard sabotage game, PSPACE-hardness is shown by
reduction from Quantified Boolean Formula (Löding & Rohde, 2003b).

Theorem 7.3.6 (Löding & Rohde 2003b). SLGue is PSPACE-complete.

Helpful Teacher and unwilling Learner (SLGhu) Whereas at first sight,
SLGhu and SLGue might seem to be duals of each other, the relationship between
them is more complex due to the different nature of the players’ moves: Learner
moves locally by choosing an state accessible from the current one, while Teacher
moves globally by removing an arbitrary edge. Nevertheless, we can show PSPACE-
hardness for SLGhu. In the proof we will use the Quantified Boolean Formula
(QBF) problem, known to be PSPACE-complete.

Definition 7.3.7 (Quantified Boolean Formula Problem).

Instance Let ϕ be an instance of QBF, i.e., a formula:

ϕ := ∃x1∀x2∃x3 . . . Qxnψ

where Q is ∃ for n odd, and ∀ for n even, and ψ is a quantifier-free formula
in conjunctive normal form.

Question Is ϕ satisfiable?
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Theorem 7.3.8. SLGhu is PSPACE-complete.

Proof. From Theorem 7.2.5 and Theorem 7.3.4 it follows that SLGhu is in PSPACE.
PSPACE-hardness of SLGhu is proved by showing that the Quantified Boolean
Formula (QBF) problem, can be polynomially reduced to SLGhu.6

We will construct a directed game arena for SLGhuϕ such that Learner has a
winning strategy in the game iff the formula ϕ is satisfiable.

The ∃-gadget. Figure 7.1 represents the situation in which Learner chooses the
assignment for xi when i is odd. This part corresponds to assigning the value to
an existentially quantified variable. Learner starts in A, and moves either left or
right; if he wants to make xi true, then he moves to X̄i, otherwise to Xi. Let us
assume that he moves right, towards X̄i. Then Teacher has exactly four moves to
remove all the edges leading to the dead-end #. At this point, Teacher cannot
remove any edge in some other place in the graph without losing. So, Learner
reaches X̄i, and Teacher is forced to remove the edge that leads from B to Xi,
because otherwise Teacher would allow Learner to reach the dead-end #. At this
point Learner moves towards B, and in the next step exits the gadget. Moving
back towards X̄i would cause him to lose, because then Teacher could remove the
edge between B and X̄i and Learner would be forced to enter the goal.

A

Xi X̄i

#

B

·· ··

in

4 4

outback back

Figure 7.1: The ∃-gadget

The ∀-gadget. Figure 7.2 represents the situation in which Teacher chooses the
assignment for xi when i is even. This part corresponds to assigning the value to
a universally quantified variable.

Let us assume that Teacher wants to make xi false. Then she leads Learner
towards Xi by successively removing the edges between C and X̄i. When Learner
already is on the path to Xi, Teacher starts removing an edge going from Xi to

6The proof uses the same strategy to the one of Theorem 7.3.6 of Löding & Rohde (2003b).
We would like to thank Frank Radmacher for suggestions about this proof.
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the dead-end #. When Learner reaches Xi, he chooses to go towards B (because
the other option is a goal). Then Teacher removes the edge that goes from B to
X̄i, and Learner leaves the gadget.

Let us now assume that Teacher wants to make xi true, and therefore wants
Learner to reach X̄i. First she removes three of four edges from X̄i to the dead-end
#. Then Learner reaches C. Let us consider two cases:

1. Learner moves to X̄i. Teacher removes the last edge between X̄i and the
dead-end #, Learner moves to B, Teacher removes the edge to Xi and
Learner leaves the gadget.

2. Learner moves to D. Teacher removes the four edges from Xi to the dead-end
#, and then eliminates the remaining edge between X̄i and the dead-end #.
Learner leaves the gadget.

A

Xi

C

X̄i

#

B

·· ··

in

3
4 4

outback back

Figure 7.2: The ∀-gadget

The verification gadget. Figure 7.3 represents the situation in which Teacher
chooses one clause from ψ. If Teacher chooses c, then Learner can choose one
literal xi from c. There are edges from xi to an ∃-gadget if i is odd, and to a ∀
-gadget otherwise, leading directly to Xi if xi is positive in c, and to X̄i otherwise.
So, if the chosen assignment satisfies ψ, then for all clauses there is at least one
literal which is true, and leads to the opposite truth value in the corresponding
gadget, from which in turn Learner can get to the dead-end # (there are four
edges left) and win the game.

For the converse, if the chosen assignment does not satisfy ψ, then Learner
gets to a corresponding point in a proper gadget, Teacher removes the edge from
this point to B, and the only option left for Learner is to enter the goal, which
means that he loses the game.
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A1 A2 A3 A4 #

C1 # C2 # C3 # C4 #

in

Figure 7.3: The verification gadget

With the above considerations, we can observe that Learner has a winning
strategy in SLGhuϕ iff ϕ is satisfiable. Moreover, the representation can clearly be
done in polynomial time with respect to the size of ϕ. This finishes the proof.

Helpful Teacher and eager Learner (SLGhe) Finally, let us have a look at
SLGhe. This game is different from the two previous ones: L and T win or lose
together. Then, a winning strategy for each of them need not take into account
all possible moves of the other. This suggests that this version should be less
complex than SLGue and SLGhu.

As mentioned in the proof of Theorem 7.3.5, L and T have a joint winning
strategy if and only if the goal vertex is reachable from L’s position. Thus, deter-
mining whether they can win SLGhe is equivalent to solving the Reachability
(st-Connectivity) problem, which is known to be non-deterministic logarithmic
space complete (NL-complete) (Papadimitriou, 1994).

Theorem 7.3.9. SLGhe is NL-complete.

Proof. Polynomial equivalence of SLGhe and REACHABILITY follows from the
argument given in the proof of Theorem 7.3.5.

Table 7.3 summarizes the complexity results for the different versions of SLG.
The complexity of these problems can be interpreted as the difficulty of deciding
whether certain aims of Teacher can be fulfilled. We can attribute the question of
the existence of the winning strategy to Teacher, as she already has the global
perspective on the situation anyway. Our results say how difficult it is for her to
decide whether there is a chance of success. The results agree with our intuition,
as coming up with a strategy to teach is easier if Learner and Teacher cooperate.
Following our interpretation it is the easiest for Teacher to check whether the
teaching will work out if Teacher assumes eagerness of Learner and she herself
does her best to ensure that he succeeds. Moreover, the remaining two cases turn
out to be equally difficult — it is as difficult to decide whether Teacher can force
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an unwilling Learner to learn as it is to decide whether an eager Learner can learn
in the presence of an unhelpful Teacher.

From the perspective of the standard sabotage games, our complexity result for
SLGhu means that with an additional safety7 winning condition, sabotage games
are PSPACE-complete.

Game Winning Condition Complexity

SLGue Learner wins iff he reaches the goal
state, Teacher wins otherwise

PSPACE-complete

SLGhu Teacher wins iff Learner reaches the goal
state, Learner wins otherwise

PSPACE-complete

SLGhe Both players win iff Learner reaches the
goal state. Both lose otherwise

NL-complete

Table 7.3: Complexity Results for Sabotage Learning Games

7.4 Relaxing Strict Alternation

As mentioned above, in sabotage (learning) games the players’ moves are asym-
metric: Learner moves locally (moving to a vertex accessible from the current one)
while Teacher moves globally (removing any edge from the graph, and thereby
manipulating the space in which Learner is moving). Intuitively, both for a helpful
and an unhelpful Teacher, it is not always necessary to react to a move of Learner
by giving immediate feedback (here, by removing an edge). This leads us to a
variation of a SLG in which Learner’s move need not in principle be followed by
Teacher’s move, i.e., Teacher has the possibility of skipping a move.

Definition 7.4.1. A sabotage learning game without strict alternation (for T )
is a tuple SLG∗ = 〈V, E , v0, vg〉. Moves of Learner are as in SLG and, once he has
chosen a vertex v1, Teacher can choose between removing an edge, in which case
the next game is given as in SLG, and doing nothing, in which case the next game
is 〈V, E , v1, vg〉. Again, there are three versions with different winning conditions,
now called SLG∗ue, SLG∗hu and SLG∗he.

After defining the class of games SLG∗, the natural question arises of how
the winning abilities of the players change from SLG to SLG∗, since in the latter

7Safety concerns those properties that we want to hold throughout the process, in this case
it is L being away from the goal. Safety is usually contrasted with reachability, which requires
the system to get into a certain configuration at some moment, here L reaching the goal (see,
e.g., Radmacher & Thomas, 2008).
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Teacher can choose between removing an edge or doing nothing. In the rest
of this section, we show that for all three winning conditions (SLG∗ue, SLG∗hu,
SLG∗he), the winning abilities of the players remain the same as in the case in
which players move in strict alternation. This is surprising in the SLGhu case. It is
by no means obvious that if Teacher has a winning strategy in the game without
strict alternation then she also has one in the regular version of the game, because
we might expect that removing an edge instead of skipping the move could result
in blocking the way to the goal.

We start with the case of an unhelpful Teacher and an eager Learner, SLG∗ue.
Note that although in this new setting matches can be infinite, e.g., in the game
with unwilling L, if T skips her moves indefinitely, L will just keep moving, and
hence the game will not be finished in finite time. However, in fact if Learner can
win the game, he can do so in a finite number of rounds. We start with a lemma
stating that if Learner can win some SLGue in some number of rounds, then he
can do so also if the underlying multi-graph has additional edges.

Definition 7.4.2. Let Σ = {a1, . . . an} be a finite set of labels. For directed labeled
multi-graphs, GΣ = (V, E) and G′Σ = (V ′, E ′), we say that GΣ is a subgraph of
G′Σ if V ⊆ V ′ and Eai ⊆ E ′ai for all labels ai ∈ Σ.

Lemma 7.4.3. If Learner has a strategy for winning the SLGue 〈V, E , v0, vg〉 in at
most n rounds, then he can also win any SLGue 〈V, E ′, v0, vg〉 in at most n rounds,
where (V, E) is a subgraph of (V, E ′).

Proof. The proof is by induction on n. In the inductive step, for the case that
T removes an edge which was not in the original multi-graph, note that the
resulting graph is a supergraph of the original one. Then we can use the inductive
hypothesis.

Theorem 7.4.4. Let us consider the SLG 〈V, E , v0, vg〉 with (V, E) being a di-
rected labeled multi-graph and v, vg ∈ V . Learner has a winning strategy in the
corresponding SLGue iff he has a wining strategy in the corresponding SLG∗ue.

Proof. From left to right, we show by induction on n that if L can win the SLGue

in at most n rounds, then he can also win the SLG∗ue in at most n rounds. In the
inductive step, in the case that T responds by not removing any edge, we first
use Lemma 7.4.3 and then can apply the inductive hypothesis.

The direction from right to left is immediate: if L has a winning strategy
for SLG∗ue, then he can also win the corresponding SLGue by using the same
strategy.

The case of helpful Teacher and unwilling Learner is more interesting. One
might expect that the additional possibility of skipping a move gives more power to
Teacher, since she could avoid removals that would have made the goal unreachable
from the current vertex. However, we can show that this is not the case. First,
we state the following lemmas.
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Lemma 7.4.5. Consider the SLG∗hu 〈V, E , v0, vg〉. If there is a path from v0 to
vg and there is no path from v0 to a state from where vg is not reachable, then
Teacher has a winning strategy.

Proof. Let us assume that all states reachable from v0 are on paths to vg. Then,
even if T refrains from removing any edge, L will be on a path to the goal. Now,
either the path to the goal does not include a loop or it does. If it does not then
T can simply wait until L arrives at the goal. If it does, T can remove the edges
that lead to the loops in such a way that vg is still reachable from any vertex.

Lemma 7.4.6. For all SLG∗hu 〈V, E , v0, vg〉, if Teacher has a winning strategy
and there is an edge (v, v′) ∈ Ea for some a ∈ Σ such that no path from v0 to vg
uses (v, v′), then Teacher also has a winning strategy in 〈V, E ′, v0, vg〉, where E ′
results from removing (v, v′) from Ea.

Proof. If v is not reachable from v0, it is easy to see that the claim holds. Assume
that v is reachable from v0. T ’s winning strategy should prevent L from moving
from v to v′ (otherwise L wins). Hence, T can also win if (v, v′) is not there.

Theorem 7.4.7. If Teacher has a winning strategy in the SLG∗hu 〈V, E , v0, vg〉,
then she also has a winning strategy in which she removes an edge in each round.

Proof. The proof is by induction on the number of edges n =
∑

a∈Σ |Ea|.
The base case
Straightforward: there is no round because L cannot move.

The inductive case
Assume that T has a winning strategy in SLG∗hu 〈V, E , v0, vg〉 with

∑
a∈Σ |Ea| =

n+ 1.
If v0 = vg, it is obvious. Otherwise, since T can win, there is some v1 ∈ V

such that (v0, v1) ∈ Ea for some a ∈ Σ and for all such v1 we have:

1. There is a path from v1 to vg, and

2. (a) T can win 〈V, E , v1, vg〉, or

(b) there is a ((v, v′), a) ∈ (V × V )× Σ such that (v, v′) ∈ Ea and T can
win 〈V, E ′, v1, vg〉 where E ′ is the result from removing (v, v′) from Ea.

If 2b holds, since
∑

a∈Σ |E ′a| = n, we are done — we use the inductive hypothesis
to conclude that T has a winning strategy in which she removes an edge in each
round (in particular, her first choice is ((v, v′), a)). Let us show that 2b holds.

If there is some (v, v′) ∈ V × V such that (v, v′) ∈ Ea for some a ∈ Σ and this
edge is not part of any path from v1 to vg then by Lemma 7.4.6, T can remove
this edge and 2b holds, so we are done.

If all edges in (V, E) belong to a path from v1 to vg, from 1, there are two cases:
either there is only one, or there is more than one path from v1 to vg.
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In the first case (only one path) (v0, v1) can be chosen since it cannot be part
of the unique path from v1 to vg. Assume now that there is more than one path
from v1 to vg. Let p = (v1, v2, . . . , vg) be the/a shortest path from v1 to vg. This
path cannot contain any loops. Then, from this path take vi such that i is the
smallest index for which it holds that from vi there is a path (vi, v

′
i+1, . . . vg) to

vg that is at least as long as the path following p from vi (i.e., (vi, vi+1, . . . , vg)).
Intuitively, when following path p from v1 to vg, vi is the first point at which one
can deviate from p in order to take another path to vg (recall that we consider
the case where every vertex in the graph is part of a path from v1 to vg). Now
it is possible for T to choose (vi, v

′
i+1) ∈ Ea. Let E ′ be the resulting set of edges

after removing (vi, v
′
i+1) from Ea. Then we are in the game 〈V, E ′, v1, vg〉. Note

that due to the way we chose the edge to be removed, in the new graph it still
holds that from v0 there is no path to a vertex from which vg is not reachable
(this holds because from vi the goal vg is still reachable). Then by Lemma 7.4.5,
T can win 〈V, E ′, v1, vg〉, which then implies 2b.

Hence, we conclude that 2b is the case and thus using the inductive hypothesis,
T can win 〈V, E , v0, vg〉 also by removing an edge in every round.

Corollary 7.4.8. Teacher has a SLG∗hu-winning strategy in 〈V, E , v0, vg〉 iff she
has a SLGhu-winning strategy.

As the reader might have noticed, the result that if Teacher can win a SLG∗hu,
then she can also win the corresponding SLGhu, relies on the fact that Learner is
the first to move. For instance, in a graph with two vertices and and one edge —
leading from the initial vertex to the goal vertex — if Teacher was to move first,
she can win the SLG∗hu only by skipping the move.

Finally, let us consider the case of helpful Teacher and eager Learner.

Theorem 7.4.9. If Learner and Teacher have a joint SLG∗he-winning strategy in
〈V, E , v0, vg〉, then they have a joint SLGhe-winning strategy

Proof. If the players have a joint SLG∗he-winning strategy, then there is an acyclic
path from v0 to vg, which L can follow. At each round, T has to remove the edge
that has just been used by L.

Let us briefly conclude this section. We have shown that allowing Teacher
to skip moves does not change the winning abilities of the players. Using these
results, both the complexity and definability results from the previous section also
apply to their versions without strict alternation, in which Teacher can skip a
move.

7.5 Conclusions and Perspectives

We have provided a game theoretical approach to learning that takes into account
different levels of cooperativeness between Learner and Teacher in a game of
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perfect information based on sabotage games. Because of our new interpretation
we were able to define sabotage learning games with three different winning
conditions. Then, following the strategy of Löding & Rohde (2003b), we have
shown how sabotage modal logic can be used to reason about these games and,
in particular, we have identified formulae of the language that characterize the
existence of winning strategies in each of the two remaining cases. We also
provided complexity results for the model-checking problem of these formulae.
Our complexity results support the intuitive claim that cooperation of agents
facilitates learning. Moreover, in our framework it turns out to be as difficult to
decide whether a Teacher can force an unwilling Learner to learn as it is to decide
whether an eager Learner can learn in the presence of an unhelpful Teacher.

Viewed from the perspective of the standard sabotage games, our complexity
result for the game between a helpful Teacher and an unwilling Learner means
that also with a safety winning condition, sabotage games are PSPACE-complete.

From the game-theoretical perspective, sabotage learning games can be ex-
tended to more general scenarios by relaxing the strict alternation. The moves of
the players are of a different nature. Learner’s moves can be seen as internal ones,
moving to a state that is reachable from the current one, while Teacher’s moves can
be interpreted externally, removing any edge of the underlying graph. Once this
asymmetry is observed, it becomes natural to ask what happens if from time to
time Learner’s move is not followed by Teacher’s move (e.g., Learner can perform
several changes of his information state before Teacher makes a restriction). Our
results of Section 7.4 show that if we allow Teacher to skip a move, the winning
abilities of the players do not change with respect to the original versions of the
games. In the case of helpful Teacher and unwilling Learner, the result is quite
surprising since it says that if Teacher can force Learner to learn in the game with
non-strict alternation, then she can also do it when she is forced to remove edges
in each round. This result crucially depends on the fact that Learner is the first
to move, and does not hold in case Teacher starts the game.

In this chapter, we have described the learning process purely as changes in
information states, without going further into their epistemic and/or doxastic
interpretation.

We understand successful learning as the ability to reach an appropriate
information state, not taking into account what happens afterwards. Formal
learning theory that treats the inductive inference type of learning situates our work
close to the concept of finite identification (Mukouchi, 1992) treated extensively
in previous chapters. In particular, we are not concerned with the stability of the
resulting state. Identification in the limit (Gold, 1967) extends finite identification
by looking beyond reachability in order to describe ‘ongoing behavior’. Fixed-point
logics, such as the modal µ-calculus (Kozen, 1983; Scott & Bakker, 1969), can
provide us with tools to express this notion of learnability. Further work involves
investigating how fixed points can enrich sabotage-based learning analysis.

Moreover, in natural learning scenarios, e.g., language learning, the goal of
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the learning process is concealed from Learner. An extension of the framework of
randomized sabotage games (Klein, Radmacher, & Thomas, 2009) could then be
used to model the interaction between Learner and Teacher.



Chapter 8

The Muddy Scientists

Imagine you are one of ten prisoners locked up for extensive use of logic. To make
you even more miserable, the guard comes up with a puzzle. He gathers all ten of
you and says: ‘Each of you will be assigned a random hat, either black or white.
You will be lined up single file where each can see the hats in front of him but not
behind. Starting with the prisoner in the back of the line and moving forward,
you must each, in turn, say only one word which must be ‘black’ or ‘white’. If the
word you uttered matches your hat color you are released, if not, you are killed
on the spot. You have half an hour to pray for your life.’ Then he leaves. One
of the prisoners says: ‘I have a plan! If you agree on it, 9 of us 10 will definitely
survive, and the remaining one has a 50/50 chance of survival.’ What does he
have in mind?

Most probably the strategy that he wants to implement is as follows. First,
the prisoners have to agree on the following meaning of the utterance of the one
who is the last in the line. If he says ‘white’, it means that he sees an even number
of white hats in front of him. If he says ‘black’ it means that he sees an odd
number of white hats in front of him. Hence, his utterance has nothing to do
with what he thinks his own hat is. There is a 50/50 chance of the total number
black hats being odd or even, and a 50/50 chance of his hat being black or white,
so his chance of survival is the same. However, after this utterance the prisoner
that stands in front of him knows for sure the color of his hat—he compares the
utterance of his predecessor with the number of white hats he sees in front of him.
If the parity is the same, he concludes that his hat is black, otherwise it is white.
He makes his guess aloud. Now the person in front of her takes into account the
first announcement and the second utterance, sees the number of white hats in
front of her, and now she is also certain about her hat’s color, etc.

This epistemic scenario shows the power of multi-agent information exchange.
A very simple quantitative public announcement carries powerful qualitative
information. Agents can easily deduce nontrivial facts from implicit and indirect
information. Obviously, the information has to be relevant to make certain
deductions possible. For example, in the above scenario announcing ‘At least 5

139
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hats are white’ is not as effective as announcing the parity.
In this chapter we deal with the question of what makes such announcements

relevant in epistemic context. We will be concerned with the simpler multi-agent
scenario of the so-called Muddy Children puzzle, where, in contrast to the above-
described Top-Hat puzzle, each agent has information about the state of all other
agents.

8.1 The Muddy Children Puzzle

Yet another thought experiment—you are now out of prison, visiting a relative,
who has three children1. While you are having coffee in the living-room, the kids
are playing outside. When they come back home, their father says:

(1) At least one of you has mud on your forehead.

Then he asks them:

(I) Can you tell for sure whether you have mud on your forehead? If yes, step
forward and announce your status.

Each child can see the mud on others but cannot see his or her own forehead.
Nothing happens. The father insists—he repeats (I). Still nothing. But after he
repeats the question for the third time suddenly all muddy children know that
they have mud on their forehead. You are quite amazed by their telepathic skills.
You ask yourself—how is that possible?

A considerable amount of philosophical and logical literature has been devoted
to describe the epistemic phenomena that make such ‘miraculous’ inferences work.
The framework of dynamic epistemic logic allows a clear and comprehensive expla-
nation of the underlying phenomena (see Van Ditmarsch et al., 2007; Gerbrandy,
1999a; Moses et al., 1986). The classical modeling of the Muddy Children puzzle
has been explained in Chapter 2. The DEL representation is extensive—the size
of the epistemic model is exponential with respect to the number of children. This
seems to be essential, as children are in fact asked whether or not they themselves
are muddy. Therefore, even the worlds in which the same number of children is
muddy, e.g., (w2 : ma,¬mb,mc) and (w3 : ma,mb,¬mc) have to be distinguished.

The similarity between the Muddy Children puzzle and the Top-Hats problem
is striking: in both cases agents need to reason about their properties on the
basis of some general quantitative statement; the settings differ with respect to
the observational power of the agents. It looks like the possibility of convergence
to knowledge in such problems depends on the trade-off between the internal
structure of epistemic information and the amount of information provided by

1We assume that it is commonly know among them that they are truthful and that they are
perfect logical reasoners.
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the public announcement. To see these differences in full light let us consider the
following two cases:

• The Top-Hats puzzle: announcing ‘an even number of hats are white’ allows
epistemic reasoning that solves the puzzle for any configuration; announcing
‘at least one hat is black’ allows solving the problem only in a very limited
number of cases.

• The Muddy Children puzzle: announcing ‘at least one of you has mud on
your forehead’ allows epistemic reasoning that solves the puzzle for any
configuration (see Van Ditmarsch et al., 2007), while announcing parity
leads to an immediate one-step solution that does not involve any epistemic
reasoning.

Hence, it is fair to say that in some sense parity announcements bring more
information than existential announcements, at least with respect to the above-
mentioned epistemic frameworks. In this chapter we study the informational
content of various announcements in an epistemic context. We will generalize the
Muddy Children problem and consider the ‘muddy inferences’ as depending on
this kind of background information (public announcement).

8.2 Muddy Children Generalized

Let us recall the first announcement made by the father:

1. At least one of you has mud on your forehead.

Sentence (1) can be seen as a background assumption that makes the epistemic
multi-agent inferential process possible. Unlike other assumptions of the puzzle
(e.g., truthfulness of the agents, their perfect reasoning skills, etc.), it is factual, ex-
ternal with respect to the agents and, as such, explicitly present in the formulation
of the puzzle. It also has a different status than the events taking place after the
announcement. In the modeling explained in Chapter 2 the first announcement
and next epistemic updates have the same status. The implicit idea is that the
agents first construct the exhaustive representation of the situation, then they
modify the model according to the background assumption and after that proceed
to performing the updates of their epistemic reasoning. In fact the question about
the epistemic states of the agents is asked after the background assumption has
been introduced. The quantifier announcement prepares the ground for epistemic
reasoning, and enforces some structure on the situation.

The background information has the form of a simple quantifier sentence, with
the quantifier ‘At least one’. However, as we have already seen the background
assumption can be altered with the use of different quantifiers, e.g., ‘at most
three’, ‘an even number of’, etc. We will have a look at various quantifiers in the
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background assumption of the Muddy Children puzzle, investigate their multi-
agent inferential power and associate the latter with some properties of generalized
quantifiers.

8.2.1 Generalized Quantifiers

The information provided by the father in the Muddy Children scenario has the
following form:

Q of you have mud on your forehead.

As a matter of fact, Q may be substituted by various quantifiers, like ‘At least
one’, ‘An even number’, ‘One third’ and so on. Of course not all quantifiers
guarantee the convergence to knowledge. As we said before, the informational
power of an announcement depends on the quantifier. This is not very surprising—
it is well understood in linguistics that expressivity of a language is to a huge
extent determined by the employed quantifier constructions (see, e.g., Peters &
Westerst̊ahl, 2006). In principle, the Muddy Children situation can be modeled as
M = (U,A), where U is the set of children and A ⊆ U is the set of children that
are muddy. Of course after father’s announcement some models are no longer
possible. Only those satisfying the quantifier sentence, i.e., M |= QU(A), should
be considered. Therefore, the model of a given Muddy Children scenario consists
of structures satisfying the quantifier sentence. The agent’s goal is to pinpoint
one of them—the actual world. To explain this idea in more detail let us start
with introducing the notion of generalized quantifiers.

Definition 8.2.1 (Mostowski 1957). A generalized quantifier Q of type (1) is a
class of structures of the form M = (U,A), where A is a subset of U . Additionally,
Q is closed under isomorphism, i.e., if M and M ′ are isomorphic2, then (M ∈
Q ⇐⇒ M ′ ∈ Q).

Let us give some examples of generalized quantifiers in the context of Muddy
Children scenarios. The classical Muddy Children puzzle with the father saying
‘At least one of you has mud on your forehead’ involves the existential generalized
quantifier:

∃ = {(U,A) : A ⊆ U & A 6= ∅}.

The variation with the father using the cardinal quantifier ‘Exactly m of you. . . ’
gives rise to the following class of models:

∃=m = {(U,A) : A ⊆ U & |A| = m}.

Furthermore, the father may know the Top-Hat puzzle and use a divisibility
announcement of the form ‘A number divisible by k of you. . . ’. This situation

2Two models M and M ′ are isomorphic iff there is a bijective map f between M and M ′

that preserves their structure.
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can be captured by divisibility quantifiers:

Dk = {(U,A) : A ⊆ U & |A| = k × n},where n ∈ N.

Finally, the father may say ‘Most of you. . . ’. Then the children need to pick a
model from the following class:

Most = {(U,A) : A ⊆ U & |A| > |U − A|}.

Isomorphism closure One of the relevant properties of generalized quantifiers
is that they are closed under isomorphism (see Definition 8.2.1). This means that
our public announcements are logical in the sense that they cannot distinguish
between isomorphic models. This leads to a theoretical discomfort—if generalized
quantifiers cannot distinguish between the situation in which only Ann is muddy
and the situation in which only Bob is muddy, it might be impossible to use this
tool to analyze the epistemic situation of the Muddy Children puzzle—somehow
the agents are able to distinguish qualitatively between the models. In their
epistemic reasoning they can identify the particular world they are in. The
additional power stemming from their observations and their epistemic skills
makes such a solution possible.

Number triangle Isomorphism closure gives rise to so-called number triangle
representation of quantifiers (see Van Benthem, 1986). Every element of a gen-
eralized quantifier of type (1) may be represented as a pair of natural numbers
(k, n), where k = |U − A| and n = |A|. In other words the first number stands
for the cardinality of the complement of A and the second number stands for the
cardinality of A. The following definition gives a formal counterpart of this notion.

Definition 8.2.2. Let Q be a type (1) generalized quantifier. For any numbers
k, n ∈ N we define a quantifier relation Q:

Q(k, n) ⇐⇒ there are U, A ⊆ U such that

|U | = n+ k, |A| = n, and QU(A).

Proposition 8.2.3. If Q is a type (1) generalized quantifier, then for all U and
all A ⊆ U we have:

QU(A) ⇐⇒ Q(|U − A|, |A|).

If we restrict ourselves to finite universes, we can represent all that is relevant
for type (1) generalized quantifiers in the structure called number triangle. This
construct simply enumerates all finite models of type (1). The node labeled (k, n)
stands for a model in which |U − A| = k and |A| = n. Now, every generalized
quantifier of type (1) can be represented by putting ‘+’ at those (k, n) that belong
to Q and ‘–’ at the rest. For example, the quantifier ‘At least one’ in number
triangle representation is shown in Figure 8.1. This handy representation will play
a crucial role in our investigations.
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(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

—
– +

– + +
– + + +

– + + + +

Figure 8.1: Number triangle and the representation of ‘At least 1’

Monotonicity An important intuition about some natural language quantifiers
is that they say that some sets are ‘large enough’. We would expect that quantifiers
are closed under some operations that change the size of those sets. The simplest
among such operations is the one of taking subsets and supersets. Intuitively,
monotonicity is about quantifiers being closed under these operations. The possible
announcements of the father may differ with respect to this factor.

Definition 8.2.4. A generalized quantifier Q of type (1) is said to be upward
monotone (increasing), just in case for any two sets X and Y , if X is a subset of
Y , then QU(X) entails QU(Y ) for every U .

For example, the quantifier ‘every child’ is monotone increasing. For example,
the first sentence below entails the second as the set of children that have mud on
the forehead is a subset of children that are dirty.

1. Every child has mud on the forehead.

2. Every child is dirty.

Definition 8.2.5. A generalized quantifier Q of type (1) is said to be downward
monotone (decreasing), just in case for any two sets X and Y , if X is a subset of
Y , then QU(Y ) entails QU(X) for every U .

A quantifier Q is said to be downward monotone (decreasing) if the entailment
holds in the other direction. An example of a monotone decreasing quantifier is
‘no child’ as the first sentence below entails the second:

1. No child is dirty.

2. No child has mud on the forehead.

Similarly a kind of monotonicity can be defined for the complement of the
predicate. This property is called extension and guarantees that if a given finite
model satisfies a quantifier, then extending U − A cannot change this.

Definition 8.2.6. A quantifier Q of type (1) satisfies extension iff for all models
M and M ′, with the universes U and U ′, respectively: A ⊆ U ⊆ U ′ implies
QU(A)⇒ QU ′(A).
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It is not surprising that monotonicity is one of the key properties of quantifiers,
both in logic and linguistics. In model theory it contributes to definability (see,
e.g., Väänänen, 2002); in linguistics it is used, among other applications, to explain
the phenomenon of negative polarity items (see, e.g., Ladusaw, 1979). Moreover,
there are good reasons to believe that it is a crucial feature for processing natural
language quantifiers, as has already been suggested by psychologists, e.g., Johnson-
Laird (1983) as well as linguists and logicians, e.g., Barwise & Cooper (1981),
and empirically supported by Geurts (2003). There are also strong links with
learnability of quantifiers (see Clark, 2010; Gierasimczuk, 2007, 2009b; Tiede,
1999).

CE quantifiers It is relevant in the context of Muddy Children puzzle to
introduce the notion of such a quantifiers.

Definition 8.2.7 (Mostowski 1957). A generalized quantifier Q of type (1,1) is
a class of structures of the form M = (U,A,B), where A,B are subsets of U .
Additionally, Q is closed under isomorphism, i.e., if M and M ′ are isomorphic,
then (M ∈ Q ⇐⇒ M ′ ∈ Q).

One may argue that the quantifiers used in the puzzle, as many other natural
language quantifiers, are in fact of type (1,1) as they bind the two predicates
‘children’ and ‘muddy’. This leads to the formalization of the form ‘Q of the
children are muddy’. We would have then two sets A and B—the first stands
for the set of children, the second for the set of muddy objects. Our considerations
in this chapter explicitly concern quantifiers of type (1), but they also account
for (1,1) quantifiers that satisfy certain additional restrictions. So-called CE-
quantifiers (Väänänen, 2002) are those quantifiers of type (1,1) that, in addition
to the isomorphism closure, satisfy the properties of extension and conservativity:

Definition 8.2.8. Let M = (U,A,B) and M ′ = (U ′, A′, B′) be finite models, and
A,B ⊆ U ⊆ U ′:

1. Q of type (1, 1) satisfies extension iff QU(A,B) implies QU ′(A,B).

2. Q of type (1, 1) is conservative iff QU(A,B) iff QU(A,A ∩B).

Those properties quite intuitively capture natural language quantifier construc-
tions, and have been even proposed as natural language universals (Barwise &
Cooper, 1981). Also, they reduce quantifiers to being dependent only on two
cardinalities: |A−B| and |A∩B|. Therefore, the relevant finite models can again
be represented as pairs of integers, and such quantifiers can be depicted in the
number triangle (see Väänänen, 2002).
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8.3 Quantifiers as Background Assumptions

In this section we will investigate the behavior of various generalized quantifiers
in the multi-agent inferential situation of the Muddy Children puzzle. We will
investigate its solvability. We will say that a Muddy Children situation is ‘solvable’
if it entails the possibility of all agents converging to knowledge about their own
status in a finite number of steps.

8.3.1 Increasing Quantifiers

Let us first consider a class of quantifiers that is closest to the classical version of
the Muddy Children puzzle, namely: ‘At least m’, where m ∈ N. In the puzzle
this takes the form of the announcement:

At least k of you have mud on your foreheads.

Quantifiers of this form are monotone increasing and satisfy extension—once the
quantifier is true in a model, adding new elements to A or U − A will not change
its logical value.3 The number triangle representation gives us always a downward
triangle starting in a point (0,m).

How do those quantifiers behave in the Muddy Children situation? In Table 8.1
rows are labeled with the total number of children and columns with the number
of muddy children. The number at the coordinates (c,m) says how many steps are
needed to solve the Muddy Children puzzle for the muddy children (immediately
after all children know their status).

0 1 2 3 4 5
1 x 1 x x x x
2 x 1 2 x x x
3 x 1 2 3 x x
4 x 1 2 3 4 x
5 x 1 2 3 4 5
6 x 1 2 3 4 5 . . .

0 1 2 3 4 5
1 x x x x x x
2 x x 1 x x x
3 x x 1 2 x x
4 x x 1 2 3 x
5 x x 1 2 3 4
6 x x 1 2 3 4 . . .

Table 8.1: ‘At least one’ and ‘At least two’

The numbers of steps needed to solve the puzzle form a triangle, with the
values increasing horizontally to the right. When increasing the parameter k
in the quantifier ‘At least k’ the whole triangle simply moves to the right and
downwards.

3In the case of (1,1) quantifiers this property corresponds to upward monotonicity in the left
argument, which is also called persistence (see Peters & Westerst̊ahl, 2006).
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From the conceptual analysis we can extract some more information about
the structure of the solutions. In Table 8.2 a number is superscripted by ‘+’
if in the final step of the reasoning some children infer their status from other
children’s epistemic announcements (from other children saying that they already
know). The lack of the plus means that the final step of the reasoning is drawn
simultaneously by all agents.

0 1 2 3 4 5
1 x 1 x x x x
2 x 1+ 2 x x x
3 x 1+ 2+ 3 x x
4 x 1+ 2+ 3+ 4 x
5 x 1+ 2+ 3+ 4+ 5
6 x 1+ 2+ 3+ 4+ 5+

. . .

0 1 2 3 4 5
1 x x x x x x
2 x x 1 x x x
3 x x 1+ 2 x x
4 x x 1+ 2+ 3 x
5 x x 1+ 2+ 3+ 4
6 x x 1+ 2+ 3+ 4+

. . .

Table 8.2: ‘At least one’ and ‘At least two’

Now we are ready to give a general fact about this type of background
assumption.

Proposition 8.3.1. Let us take a Muddy Children situation, with n the number
of children, m ≤ n the number of muddy children. The Muddy Children puzzle
with the background assumption ‘At least k of you have mud on your forehead’
can be solved in m− (k − 1) steps, where k ≤ m.

Using a similar background assumption with inner negation

At least k of you do not have mud on your foreheads

also makes the puzzle solvable. ‘At least k not’ behaves as ‘At least k’, but depends
on the number of clean children. In general, inner negation works this way for
other quantifiers.

A simplifying observation about a similar class of upward monotone quantifiers
that satisfy extension is as follows:

Observation 8.3.2. Let us take a Muddy Children situation, with n the number
of children, m ≤ n the number of muddy children. The Muddy Children puzzle
with the background assumption ‘More than k of you have mud on your forehead’
can be solved in m− k steps, where k ≤ m.

8.3.2 Decreasing Quantifiers

Let us now consider another natural class, downward monotone quantifiers that
satisfy extension: ‘At most k’, where k ∈ N. In the puzzle this takes form of the
announcement:

At most k of you have mud on your foreheads.



148 Chapter 8. The Muddy Scientists

Like in the case of increasing quantifiers we provide a table with the numbers of
steps needed for solving the puzzle in respective cases. By doing this we indicate
how the situation changes with the parameter k. In Table 8.3 we can observe

0 1 2 3 4
1 ? ? x x x
2 2 1+ x x x
3 2 1+ x x x
4 2 1+ x x x
5 2 1+ x x x . . .

0 1 2 3 4
1 ? ? x x x
2 ? ? ? x x
3 3 2+ 1+ x x
4 3 2+ 1+ x x
5 3 2+ 1+ x x . . .

Table 8.3: ‘At most one’ and ‘At most two’

that the numbers of steps needed to solve the puzzle form a block, with the
values increasing horizontally to the left. When increasing the parameter k in
the quantifier ‘At least k’ the whole blocks moves to the right and downwards
revealing the next column on the left. Also, in case when the parameter k in the
quantifiers is larger or equal to the number of muddy children, the puzzle is not
solvable! When the block of numbers moves downward together with k, it leaves
a trace consisting of question marks behind that correspond to the unsolvable
situations.

We can characterize the solvability of Muddy Children situations with the
quantifier ‘At most k’ in the following way.

Proposition 8.3.3. Let us take a Muddy Children scenario, with n the number
of children, m ≤ n the number of muddy children. If n > k then the Muddy
Children puzzle with the background assumption ‘At most k of you have mud on
your forehead’ can be solved in (k + 1)−m steps. If n ≤ k the situation is not
solvable.

Like in the previous case we give a simplifying observation about a similar
class of downward monotone quantifiers that satisfy extension:

Observation 8.3.4. Let us take a Muddy Children situation, with n the number
of children, m ≤ n the number of muddy children. The Muddy Children puzzle
with the background assumption ‘Less than k of you have mud on your forehead’
can be solved in k −m steps, where k ≤ m. If m < k the situation is not solvable.

8.3.3 Cardinal and Parity Quantifiers

Some kinds of quantifiers allow one-step immediate solvability for all agents.
Taking into consideration what they already know, the announcement gives them
full certainty about their state. This takes place for example when the number of
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muddy children is explicitly announced with the use of the quantifier ‘Exactly k’,
where k ∈ N. The announcement of:

Exactly k of you have mud on your foreheads

always leads to immediate answers (see Table 8.4).

0 . . . k k+1 . . .
1 x x 1 x x
2 x x 1 x x
3 x x 1 x x
4 x x 1 x x
5 x x 1 x x . . .

Table 8.4: ‘Exactly k’

Proposition 8.3.5. Every Muddy Children scenario with a background assumption
of the form ‘Exactly k’ is solvable in 1 step.

There are other, more interesting quantifiers with this property, e.g., divisibility
quantifiers: ‘A number divisible by k’, where k ∈ N. An example of such an
announcement for k = 2 is:

An even number of you have mud on your foreheads.

In Table 8.5 you can see that the columns that include solvable scenarios are
isolated and consists only of 1s. Moreover, if the number k in the quantifier
‘Divisible by k’ increases the gaps between the columns.

0 1 2 3 4
1 1 x 1 x 1
2 1 x 1 x 1
3 1 x 1 x 1
4 1 x 1 x 1
5 1 x 1 x 1 . . .

0 1 2 3 4 5 6
1 1 x x 1 x x 1
2 1 x x 1 x x 1
3 1 x x 1 x x 1
4 1 x x 1 x x 1
5 1 x x 1 x x 1 . . .

Table 8.5: ‘Even’ and ‘Divisible by 3’

A relevant fact is as follows.

Proposition 8.3.6. Let us take a Muddy Children scenario. The Muddy Children
puzzle with the background assumption ‘The number of you that have mud on your
forehead is ` mod k’, for any `, k ∈ N, can be solved in 1 step.

Additionally, it is worth noting that provided that every agent sees all other
agents, and in fact the number of muddy children is k ×m, the announcement of
quantifier ‘A number divisible by k’ is equivalent to announcing ‘Exactly k ×m’.
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All and No There are two simple natural language quantifiers that also allow
one step immediate solvability for all agents. Quantifiers ‘All’ and ‘No’ inform
all the agents directly about the status of all agents, and therefore their own.
Trivially, the announcement of:

All of you have mud on your foreheads

or
None of you have mud on your foreheads

always leads to immediate answers (see Table 8.6).

0 1 2 3 4
1 x 1 x x x
2 x x 1 x x
3 x x x 1 x
4 x x x x 1
5 x x x x x . . .

0 1 2 3 4 5
1 1 x x x x x
2 1 x x x x x
3 1 x x x x x
4 1 x x x x x
5 1 x x x x x . . .

Table 8.6: ‘All’ and ‘No’

Proposition 8.3.7. Every Muddy Children scenario with a background assumption
of the form ‘All’ and ‘No’ is solvable in 1 step.

8.3.4 Proportional Quantifiers

Proportional quantifiers indicate the ratio between the number of elements in
the predicate and the total number of elements. The first that comes to mind
is ‘Exactly 1

k
’, where k ∈ N. Update with this information will be survived by

cardinalities that are divisible by k. In those situations, where |A| = k × `, for
some ` ∈ N, it is equivalent to the cardinal quantifier ‘Exactly `’ (see previous
section). However, there are also more interesting cases of upward monotone
proportional quantifiers. Such class is, e.g., ‘More than 1

k
’, where k ∈ N. An

example of such announcement could be:

Most of you have mud on your foreheads.

If we agree to interpret ‘Most’ as ‘More than half’, then the solvability of the
Muddy Children puzzle with this quantifier is depicted in on the left in Table 8.7.
The table on the right shows the pattern for the quantifier ‘More than one third’.

The patterns in Table 8.7 might at first sight seem complex, but as a matter of
fact it is quite easy to observe that the pattern consists of smaller parts resembling
simple increasing quantifiers that satisfy extension (see Section 8.3.1). In fact
these muddy situations are reducible to those given by quantifiers ‘More than k’.
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0 1 2 3 4 5
1 x 1 x x x x
2 x x 1 x x x
3 x x 1+ 2 x x
4 x x x 1+ 2 x
5 x x x 1+ 2+ 3
6 x x x x 1+ 2+

. . .

0 1 2 3 4 5
1 x 1 x x x x
2 x 1 2 x x x
3 x x 1+ 2 x x
4 x x 1+ 2+ 3 x
5 x x 1+ 2+ 3+ 4
6 x x x 1+ 2+ 3+

. . .

Table 8.7: ‘More than half’ and ‘More than one third’

In a given situation, when |U | = n, ‘More than 1
k
’ is of course equivalent to ‘More

than n
k
’. This can be also observed in Table 8.7, the examples of ‘intervals’ of the

kind described in the proposition are printed bold.

Observation 8.3.8. The Muddy Quantifier ‘More than 1
k
’ consists of intervals

q0, q1, . . . such that:

1. q0 consists of k − 1 rows in the table, and for i > 0, qi consists of k rows.

2. qi is the segment of size k of the table for ‘More than i’ starting in the i-th
row.

The number of steps needed to solve this puzzle is then characterized in the
following way.

Proposition 8.3.9. Let us take a Muddy Children situation, with n the number
of children, m ≤ n number of muddy children. The Muddy Children puzzle with
the background assumption ‘More than 1

k
of you have mud on your forehead’ can

be solved in dm− n
k
e steps.

All above-mentioned propositions lead to a uniform perspective on quantifier
announcements in the Muddy Children puzzle. In the next sections we will describe
the epistemic reasoning using the tools of generalized quantifier theory.

8.4 Iterated Epistemic Reasoning

The number of steps needed to solve the puzzle seems to be pretty arbitrary. It
is, however, clearly determined by the epistemic structures that can be defined
on the basis of the number triangle. In order to understand how this works, let
us have a look at a concrete Muddy Children scenario. Let us assume that we
have three agents a, b, and c. All possibilities with respect to the size of the set of
muddy children are enumerated in the third level of the number triangle. Let us
also assume at this point that the actual situation is that agents a, b are muddy
and c is clean. Therefore, with respect to our representation the real world is
(1, 2), one child is clean and two are muddy:
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(3,0) (2,1) (1,2) (0,3)

Now, let us focus on what the agents can observe. Agent a sees one muddy child
and one clean child. The same holds for agent b. Therefore their observational
state can be encoded as (1,1). Accordingly, the observational state of c is (0,2).
In general, if the number of agents is n, each agent can observe n − 1 agents.
Therefore, in our case what agents observe is in the second level of the number
triangle. So, in order to model what an agent sees, and what the actual state
can be, we need levels 2 and 3. Level 2 includes states that encode all possible
observations of facts in level 3. Level 3 lists facts—observations extended by the
state of the respective agent.

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

Now, the question that each of the agents is facing is whether they are muddy or
not. For example, agent a has to decide whether he should extend his observation
state, (1, 1), to the left state (2, 1) (a decides that he is clean) or to the right state
(1, 2) (a decides that he is muddy). The same holds for agent b. The situation
of agent c is similar, his observational state is (0, 2) and it has two potential
extensions (1, 2) and (0, 3). In general, we will say that every observational state
has two possible successors.

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

a,b a,b c c

Given this representation, we can now analyze what happens in the Muddy
Children situation. First, the announcement is given:

At least one of you is muddy.

According to the number triangle representation, this allows eliminating those
factual states that represent finite models that are not in the quantifier. In this
case it is (3, 0). The new model is as follows.

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

a,b a,b c c



8.4. Iterated Epistemic Reasoning 153

The father asks: ‘Can you tell for sure whether or not you have mud on your
forehead?’ In our graph, this question means: ‘Do any of you have only one
successor?’ All agents know that (3, 0) has just been eliminated. Agent a considers
it possible that the actual state is (2, 1), i.e., that two agents are clean and one
is muddy, so that he himself would have to be clean. But then he knows that
there would have to be an agent whose observational state is (2, 0)—there has to
be a muddy agent that observes two clean ones. For this hypothetical agent the
uncertainty disappeared just after quantifier announcement (for (2, 0) there is only
one successor left). So, when it becomes clear that no one knows and the father
asks the question again, the world (2, 1) gets eliminated and the only possibility
for agent a is now (1, 2) via the right successor, and this indicates that he has to
be muddy. Agent b is in exactly the same situation. They both can announce
that they know. And since c witnessed the whole process he knows that the only
way for them to know was to be in (1, 1) and decide on (1, 2). So, on the basis of
their announcement of knowledge, c also knows that he is supposed to take the
left successor, to arrive at the right conclusion—c is clean.

(1,1)

(1,2)

(0,2)

(0,3)

a,b c c

(1,1)

(1,2)

(0,2)

a,b c

This epistemic reasoning took two steps. If the actual world was (2, 1) some
agent’s observation would be (2, 0), and this agent would know his status after the
first announcement, and the rest of the agents would follow. Accordingly, for (0, 3)
this would have taken three steps. This can be summed up in the following way:
the quantifier breaks the perfect ‘uncertainty structure’ of the model, and the
farther the actual state is from this break, the longer it takes to solve the puzzle.

Epistemic Modeling Let us now generalize the situation analyzed in the
previous section. First let us formalize the intuition levels: observational and
factual, and the nature of agents.

Levels In general, if there are n agents, we take the nth level of the triangle, i.e.,
finite models with |U | = n, enumerating all possible settings (up to isomorphism).
This level will be called the factual level. It constitutes the uncertainty domain of
the children. We can say that the children’s uncertainty is captured by the variety
of models belonging to the generalized quantifier formalizing the background
assumption. Moreover, in the puzzle every child sees all other children, but not
himself, so every possible observation consists of n− 1 children. Therefore, level
n − 1 of the number triangle can be interpreted as enumerating every possible
observation of the children. We will call it the observational level. Each observation
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can be extended to one of the two factual states that are the closest below—to
the left if the observer in question is clean or to the right if he is muddy.

Agents There can be any number of Muddy Children—the puzzle is a real
multi -agent scenario. This is why it is so surprising to realize that it can be
collapsed to two agents, i.e., two local states. Obviously every agent is in one of
the two groups: either among the muddy children or among the clean ones. But
this gives much more—in fact there are at most two possible observational states
that the agents might be in. Every clean child observes the same as all other clean
children, and every muddy child observes the same as all other muddy children.

Proposition 8.4.1. Every agent’s observation is encoded by one of at most two
states in the observational level. Those two are neighboring states.

Proof. For the first part. Assume that the total number of children is n, the
number of muddy children is m. Let us pick an agent and call him a. There are
two possibilities:

1. a is muddy, then a’s observational state is (n−m,m− 1).

2. a is clean, then a’s observational state is ((n−m)− 1,m).

The two relevant observational states neighbor each other in the model because
they are the only two states that can be extended to the actual state (n−m,m).

Moreover, the actual world clearly determines the number of agents perceiving
the same situation.

Proposition 8.4.2. Given a certain situation (c,m) there are c children that are
in the observational state (c− 1,m) and m children in the observational state of
(c,m− 1). In case m = 0 all children are in the observational state (c− 1, 0). In
case c = 0 all children are in the observational state (0,m− 1).

8.4.1 An Epistemic Model Based on the Number Triangle

In this section we will link our modeling of the Muddy Children puzzle to the
existing approaches based on dynamic epistemic logic. The correspondence is not
straightforward. However, it is possible to formalize our models in a similar way.

Definition 8.4.3. The Muddy Children model for n children is a quadruple
MMC

n = (So, Sf , Rm, Rm̄), where

• So = {(c,m) | c+m = n− 1} (the observational states),

• Sf = {(c,m) | c+m = n} (the factual states),

• Rm ⊆ So × Sf , such that Rm((c1,m1), (c2,m2)) iff m2 = m1 + 1,
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• Rm̄ ⊆ So × Sf , such that Rm̄((c1,m1), (c2,m2)) iff c2 = c1 + 1.

In other words, the Muddy Children model is a two-row fragment of the
number triangle with a double successor relation. An agent having access from
an observational state (c,m) to the factual state (c,m + 1) corresponds to the
possibility that he is muddy. Every such two states are in the relation Rm.
Analogously, for Rm̄.

Let us observe that the size of such models is linear with respect to the number
of children. To be precise:

Observation 8.4.4. If n ∈ N is the number of children, then the Muddy Children
model has 2n+ 1 states.

This is a significant improvement with respect to the classical modeling in
which an exponential number of states is required (cf. Van Ditmarsch et al., 2007;
Fagin et al., 1995).

In this setting generalized quantifiers can be interpreted as propositional
letters evaluated over the factual states of the Muddy Children model. For any
generalized quantifier of type (1) we take a propositional letter q. Now, let
MMC

n = (So, Sf , Rm, Rm̄) be a Muddy Children model, and (c,m) ∈ Sf , then the
semantics of q can be defined in the following way:

MMC
n , (c,m) |= q iff (c,m) ∈ Q.

Every variant of the Muddy Children puzzle comes with a quantifier that consti-
tutes the background assumption of the puzzle. Therefore we can assume that
the models get cut by the quantifier before the epistemic reasoning starts. This
cut is in fact an update of the factual level of the Muddy Children model with a
corresponding ‘quantifier’ letter q. Below we define what happens to the general
Muddy Children model when a quantifier is introduced.

Definition 8.4.5. Having the Muddy Children model MMC
n = (So, Sf , Rm, Rm̄)

and a generalized quantifier Q of type (1), we define the quantifier update ofMMC
n

with the quantifier Q as resulting in the Q-Muddy Children model MQMC
n =

(S ′o, S
′
f , R

′
m, R

′
m̄) in the following way:

• S ′o = {(c,m) | (c,m) ∈ So & (Q(c+ 1,m) ∨ Q(c,m+ 1))},

• S ′f = {(c,m) | (c,m) ∈ Sf & Q(c,m)},

• R′m = Rm� (S ′o × S ′f ),

• R′m̄ = Rm̄� (S ′o × S ′f ).
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At this point let us observe that for some quantifiers Q the Q-Muddy Children
models have a fixed size, independent of the number of children. Such a quantifier
is for example ‘At most k’. In all situations in which the number of children n
is larger than k the puzzle is solvable. If fact, in this situation for any n > k,
|S ′f | = k. This shows that some quantifier announcements leave behind them a
fixed number of possible worlds.

The epistemic information can be expressed with formulae evaluated in the
observational states. We can say that an agent in an observational state (c,m)
knows that ϕm (that he is muddy) if and only if the only successor of (c,m) is
(c,m+ 1). Moreover, if an epistemic announcement eliminates an observational
state it also eliminates all its successors. As our modeling is Muddy-Children
specific, we do not give here a full epistemic language. The semantic analysis of the
announcements is aimed at emphasizing the analogy with so-called unsuccessful
announcements in DEL (see Van Ditmarsch et al., 2007).

8.5 Muddy Children Solvability

By reinterpreting the Muddy Children puzzle within the semantics of quantifiers
we can associate every finite model with the number of steps needed to solve the
puzzle, if it is solvable at all.

Definition 8.5.1. A muddy quantifier is a pair QMC = (Q, fQ), where Q is
a quantifier and fQ : Q → N is a function that assigns to a pair of numbers
representing M ∈ Q the number of steps needed to solve the Muddy Children
puzzle with the background assumption containing quantifier Q.

Below we list some examples of muddy quantifiers in the number triangle
representation according to the previously given enumeration of interesting cases.4

First let us consider the quantifier ‘At least k’. It is easy to observe that
increasing k causes the downward triangle to move down along the (0, 0)–(0, n)
axis.

This quantifier allows solving the Muddy Children puzzle for any configuration
of ‘muddiness’. However, within a certain level, the farther from a minus the
longer it takes.

Now let us have a look at the quantifier ‘At most k’.
The question-marks occur in place of models that satisfy the quantifier, but

for which it is impossible to solve the Muddy Children puzzle. For example, if
one child is clean and one child is muddy (the actual world is (1, 1)) the Muddy
Children situation does not lead to a solution if the announcement is:

At most two of you are muddy.

4As before, the index + marks the solutions in which at least one agent infers his status from
the announcement of knowledge of other agents. The lack of + marks the situations in which
the agents discover their status simultaneously.
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—
– 1

– 1+ 2
– 1+ 2+ 3

– 1+ 2+ 3+ 4

—
– –

– – 1
– – 1+ 2

– – 1+ 2+ 3

Figure 8.2: Increasing muddy-quantifiers ‘At least 1’ and ‘At least 2’

—

? ?
2 1+ –

2 1+ – –

2 1+ – – –

—

? ?
? ? ?

3 2+ 1+ –

3 2+ 1+ – –

Figure 8.3: Decreasing muddy-quantifiers ‘At most 1’ and ‘At most 2’

Again, the farther from a minus the longer it takes to solve the puzzle.
Divisibility quantifiers in the Muddy Children setting do not involve much

inference—every situation is solvable in one step (see Figure 8.4). Moreover, there

—
1 –

1 – 1
1 – 1 –

1 – 1 – 1
1 – 1 – 1 –

—
1 –

1 – –
1 – – 1

1 – – 1 –
1 – – 1 – –

Figure 8.4: Muddy-quantifiers ‘Divisible by 2’ and ‘Divisible by 3’

is no ‘+’ superscript anywhere. This indicates that the answers are simultaneously
given by all the agents.

Finally, let us have a look at upward monotone proportional quantifiers. They
create more complicated patterns (see Figure 8.5).

Notice the similarity between these patterns and those of Figure 8.5. The
number of steps increases to the right, together with the distance from a minus.

Function fQ in Definition 8.5.1 gives the number of steps needed to solve the
puzzle. It follows from the structure of the epistemic models that underlie the
reasoning:

Proposition 8.5.2. Let Q be a generalized quantifier, and n be the number of
children. Then the corresponding muddy quantifier is QMC = (Q, fQ), where the
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—
– 1
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– – – 1+ 2+ 3

– – – – 1+ 2+ 3

—
– 1

– 1+ 2
– – 1+ 2

– – 1+ 2+ 3
– – 1+ 2+ 3+ 4

– – – 1+ 2+ 3+ 4

Figure 8.5: ‘More than half’ and ‘More than one third’

partial function fQ : Q ⇀ N is defined in the following way.

fQ((n−m,m)) = min(µx≤n−m (n−m− x,m+ x) 6∈ Q, µy≤m (n−m+ y,m− y) 6∈ Q).

In other words, the function assigns a value x to (u − k, k) in the level u of
the number triangle if (u − k, k) ∈ Q and there is (u − `, `) in the level u such
that (u− `, `) 6∈ Q. Moreover, the value x encodes the distance from the nearest
(u− `, `) such that (u− `, `) 6∈ Q.

Concerning the assignment of the number of steps needed for solving the puzzle,
we can also ask what is the structure of those steps. Namely, we can characterize
situations in which some agents infer their status from the announcements of
other agents, in contrast to the cases in which it happens simultaneously (we use
‘+’-superscripts to identify those situations). The definition of the partial function
f+
Q : Q ⇀ {+} can be given in the following way. f+

Q ((n−m,m)) = + iff:

1. fQ((n−m,m)) is defined, and

2. m 6= 0 and m 6= n and some agent considers two factual worlds possible.

The above discussion leads to an observation that solving the Muddy Children
Puzzle is possible if the announcement of the quantifier leaves one observational
state with just one successor. Therefore we can characterize Muddy Children
Solvability in the following way:

Theorem 8.5.3 (Muddy Children Solvability). Let n be the number of children,
m ≤ n the number of muddy children, and Q be the background assumption. A
Muddy Children situation is solvable iff (n −m,m) ∈ Q and there is an ` ≤ n
such that (n− `, `) 6∈ Q.

The theorem is easy to verify with the use of the epistemic modeling explained
in the previous section.

8.6 Discussion

Internal complexity and plausible modeling One of the main aims of ap-
plying logic in artificial intelligence and cognitive science is to model possible
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inferential strategies of an agent. An immediate plausibility test is the compu-
tational complexity of the proposed model. However, by ‘complexity’ we do not
mean the computational complexity of model checking of the logic in general,
but rather an agent’s internal complexity (cf. Aucher, 2010). Namely, how many
computational resources (e.g., time and working memory) an agent needs to carry
out a solution procedure suggested by the logical model. If the model demands
that an agent has to perform intractable computations, then it might be not a
correct description of the cognitive task an agent is faced with. Even though hu-
mans can not always deal with epistemic reasonings very efficiently (see Meijering,
Van Maanen, Van Rijn, & Verbrugge, 2010), we do not expect them to come up
with epistemic representations that lead to intractable problems, if only there is a
simpler possibility (cf. Van Rooij, 2008; Szymanik, 2009).

The framework of dynamic epistemic logic as explained in Chapter 2 allows a
clear and comprehensive explanation of the underlying phenomena. However, the
representation of the problem is extensive—the size of the epistemic model to be
considered is exponential with respect to the number of children. Unfortunately,
this is not a desirable property of a cognitive model. It violates working memory
restrictions humans are subjected to, and therefore it is hard to believe that
subjects’ mental computations are based on that logical representation. The
representation of the puzzle proposed in this chapter does not share the above-
mentioned exponential-size problem. In our modeling of the Muddy Children
puzzle the local perspectives of the agents are taken explicitly. The observational
states encode the content of their background knowledge. Then we have the
decision process—each agent’s task is to decide his ‘muddiness’. In order to decide
whether both possibilities are open, first the quantifier has to be computed, the
task that for most everyday quantifiers is easy (see Szymanik, 2009; Szymanik &
Zajenkowski, 2010). Then the iterated epistemic reasoning takes place. Our models
determine how many steps of the epistemic reasoning are needed to know which
state holds. This explicit, step by step analysis brings us closer to investigating
the internal complexity of epistemic problems that the agents are facing. The
mental representations implicitly postulated here are more local (and therefore
linear in size).

Isomorphism closure The size of our models is clearly connected to the prop-
erties of generalized quantifiers. One can argue that the latter have a major
expressive weakness—they are closed under isomorphism. There are many impor-
tant aspects of situations that they simply ‘overlook’. Our work indicates that this
property can increase the informational power of a message in certain situations.
Clearly, announcements that do not ‘trim’ all agents’ uncertainty simultaneously,
announcements that are agent-specific, do not have the power of leading to a
successful epistemic iteration. If the announcement includes only a determiner
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that is not closed under isomorphism, e.g.:

Agent a is muddy.

all worlds that make a clean disappear, together with the uncertainty of a himself.
But this elimination is not the same for all agents—others cannot infer anything
more no matter how many times they are asked to do so.

The choice of epistemic representation As mentioned above, our number
triangle-based modeling of Muddy Children situations uses structures that are
linear in size with respect to the number of agents. This significant improvement
with respect to the classical DEL approach begs for an explanation. In particular,
it is interesting which aspects of the epistemic situation, if any, have to be dropped
or redefined. Our framework is clearly compatible with the one of DEL in terms
of (the structure and the number of) steps needed for completion of epistemic
reasoning. Their semantic interpretation is different, because the model behind
them is significantly changed. Hence, the question remains what is the source
of these concise models. We view the goal of the Muddy Children reasonings in
terms of the individual learning of the agents, and not in the emergence of some
general properties, like common knowledge. We believe that this difference is one
of perspective, rather than one of core content of our work. What makes our
models essentially smaller is that they ‘internalize’ more assumptions about agents’
reasoning capabilities, e.g., agents become implicitly aware of the binary nature
of the situation. Moreover, our choice of epistemic modeling is particularly suited
for discussing ‘efficiency’ of various quantifier announcements. A generalization of
this observation indicates that the domain of the classical epistemic model can be
partitioned by an equivalence relation, and the efficiency of the announcements
depends on their ‘compatibility’ with this partition. In other words, all assertions
that are used in the scenario either remove or retain whole partition cells. In
that case, clearly, the update process will terminate with a number of steps
measured by the number of equivalence classes, and not with the size of the actual
model. In particular, in the Muddy Children puzzle the equivalence classes are
given by the worlds connected by permutations of individuals, and all relevant
assertions, both the Father’s announcement and the children’s subsequent ‘silence’,
respect that equivalence relation. This perspective on the generic assertions of
the Muddy Children puzzle can be linked to the rationality assertions of game
solution procedures (see Van Benthem, 2007). Another interesting interpretation
of the partition is the one with the notion of issue in dynamic epistemic logic
of questions (Van Benthem & Minica, 2010): by choosing an optimal issue, we
can speed up the learning processes dramatically. Moreover, it is important to
note that the problem of making epistemic models more concise has recently been
considered in the context of abstraction techniques for Kripke models (Wang,
2010). Investigating our modelling in this context constitutes an interesting topic
for future research.
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The local, internal perspective on the puzzle provides an interesting link with
formal epistemology. An agent in the Muddy Children puzzle can be seen as
a scientist who tries to inductively decide a hypothesis, tries to discover what
the actual world is like. Our analysis shows that even if the agents have limited
observational capacities, the presence and interconnection with other scientists
doing similar research can influence the discovery in a positive way.

8.7 Conclusions and Perspectives

In this chapter we characterized solvability of the Muddy Children puzzle with
arbitrary generalized quantifier announcements. We introduced a new kind of
logical modeling of the puzzle based on the idea of the number triangle. In our
approach the representation that an agent has to come up with is exponentially
smaller than in other models based on dynamic epistemic logic. Therefore, it
seems that the model can be attractive in all those applications where an agent’s
internal complexity of the problem is crucial, like cognitive science modeling or
designing multi-agent systems in the domain of artificial intelligence.

There are many further methodological questions concerning our logical model-
ing. First is that of the generality of our approach. Can we extend it in a way that
allows more flexibility of logical theories, like DEL? A possible direction would be
to associate explicitly our local representations with computational procedures,
e.g., by viewing the representation in terms of automata theory (cf. Van der Mey-
den, 1996; Su, Sattar, Governatori, & Chen, 2005). Secondly, our work includes
extension of public announcements to arbitrary generalized quantifiers. This in
itself leads to a number of important issues, e.g., what is the epistemic logic of
quantifier public announcements?

Our work generates many directions of follow-up research. For instance,
we could consider situations with many predicates (e.g., children having spots
of different colors on their foreheads), manipulate the observational power of
the children or restrict their abilities to infer higher-order epistemic states to
account for well-known processing bottlenecks (see, e.g., Verbrugge, 2009). Finally,
distinguishing between factual and observational states in the proposed epistemic
modeling can be used to investigate other types of epistemic inferences and puzzles,
for example Russian Cards or the Top-Hat puzzle. In general, we hope that this
fresh view on the old puzzle will motivate new developments in the study of agents’
local perspective in multi-agent intelligent interaction.
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Chapter 9

Conclusions and Outlook

In Chapter 1 we defined as the aim of this thesis “to link learning theory with
logics of knowledge and belief”. Let us now look back to see to what extent we
have fulfilled this goal.

We started off (in Chapter 3) with a methodological analysis of both frameworks,
in particular with analyzing the basic learning-theoretic setting in terms of dynamic
epistemic logic. We observed a compatibility with respect to basic epistemological
assumptions, but we also pointed out some difficulties, in particular the difference
in the perspective on the mind-change process. Learning theory focuses on
computational problems and on a global picture of sequences of conjectures.
Dynamic epistemic logic zooms in on particular steps of revision, providing a
more constructive, logical approach. We built on what the two have in common,
i.e., on the initial uncertainty of the agent. The translation of the basic learning
theory setting into the semantics of modal logic exposes the epistemic grounds
of inductive inference. It also shows the restrictions of the domain of epistemic
problems covered by learning theory. In particular, the learning theory setting is
conceptually limited to the single agent case.

Part II of this thesis is directly concerned with the problem of translation
between the paradigms. The idea is to express learnability in epistemic and
doxastic logic, accounting for the temporal aspects of learning as well. In Chapter
4 we approached the problem from the perspective of identifiability in the limit, the
dominant notion of learning theory. Learning in the limit is the kind of learning of
which success does not depend on reaching certainty. It does not concern the state
of irrevocable knowledge, but rather stable true belief. Hence, we linked it with
the belief-revision problem and with doxastic logic. Using a characterization of
identifiability in the limit we defined learnability as the reachability of safe belief.
We also showed the properties of various belief-revision policies with respect to their
ability to converge to the true belief. First, we restricted ourselves to learning from
sound and complete streams of positive data. We showed that learning methods
based on belief revision via conditioning (update) and lexicographic revision are
universal, i.e., provided certain prior conditions, those methods are as powerful as
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identification in the limit. Those prior conditions, the agent’s prior dispositions
for belief revision, play a crucial role here. We showed that in some cases, these
priors cannot be modeled using standard belief-revision models (as those are based
on well-founded preorders), but only using generalized models (based on simple
preorders). Furthermore, we drew conclusions about the existence of a tension
between conservatism and learning power by showing that the very popular, most
‘conservative’ belief-revision method fails to be universal. In the second part we
turned to the case of learning from both positive and negative data. Here, along
with positive information the agent receives negative data about facts that do not
hold of the actual world. We again assumed these streams to be truthful and we
drew conclusions about iterated belief revision governed by such streams. This
enriched framework allows us to consider the occurrence of erroneous information.
Provided that errors occur finitely often and are always eventually corrected we
show that the lexicographic revision method is still reliable, but more conservative
methods fail.

In Chapter 5 we were also concerned with expressing learnability in the
epistemic framework, this time focusing only on update. We advanced a different
approach—we investigated both finite identifiability and identifiability in the limit
as properties of epistemic and doxastic models. We characterized the outcome
of finite identification in the language of epistemic logic and dynamic epistemic
logic. As a corollary from our results obtained in Chapter 4, we also characterized
the outcome of identification in the limit in doxastic logic. Then, focusing on
the procedural aspect of learning we observed that the iterated update of finite
identification generates an epistemic temporal forest. We used the latter to
characterize finite identifiability in epistemic temporal logic. Then, we again
extended our results to the case of identifiability in the limit, indicating the
temporal conditions for the success of this type of learning. As a result, we
show what properties the initial uncertainty range needs to have, to guarantee
reaching the state of irrevocable knowledge and true stable belief. Both irrevocable
knowledge and true stable belief concern the complete description of the actual
world. Finally, we mentioned that our temporal setting accounts for more than
just language learning. All other types of learning, e.g., function-learning, can be
analyzed in this temporal setting.

In Part II our aim was to establish a connection between the two frameworks.
As we all know, well-established relationships are usually based on mutual profit,
motivation and inspiration exchange. The research presented in Part III of this
book was meant to live up to this kind of expectation. In Chapter 6, inspired
by the dynamic epistemic logic interpretation of certainty, we investigated it in
the learning-theoretic setting. We focused on the distinction between objective
certainty (the objective lack of alternatives to the actual world) and subjective,
introspective certainty (with the agent being aware of the unambiguity). Assuming
the computability of agents, we showed that there are classes of languages that are
finitely identifiable, i.e., the agent can always eventually conclude certainty; but no
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computable agent can always conclude it as soon as it is objectively possible, i.e.,
as soon as the data exclude all other possibilities. For learning theory this means
that the domain of finite identifiability properly contains the domain of fastest
finite identification—a well-motivated new kind of finite identification. In the same
chapter, on the basis of learning theory, we also investigated the complexity of
obtaining minimal conclusive samples of information, the minimal descriptions that
include enough information to eliminate uncertainty. Our results may, for instance,
find applications in the analysis of efficient communication in epistemic games.
In particular, the task of finding a minimal-size sample eliminating uncertainty
turned out to be NP-complete and hence, most probably, more difficult than
finding any minimal sample, which can be done in polynomial time. As the task of
finding a minimal-size sample could be delegated to a helpful teacher, our results
provide an indirect computational motivation for introducing another agent, a
teacher, to the simple setting of finite identification. Therefore, computational
analysis shows that teaching in the most efficient way is very demanding.

The aim of Chapter 7 was to enrich both learning theory and dynamic epistemic
logic with new learning-related concepts. We questioned the learning-theoretic
dogma of learner-teacher cooperativeness by analyzing the computational com-
plexity of various learning and teaching attitudes. It turned out that the question
of teachability of a concept (the possibility to direct the learner to the desired
state in a graph) is NP-complete under the assumption of non-cooperativeness
of the learner. Our epistemic interpretation of Sabotage Games provided in that
chapter, is based on deletion, as are epistemic update and the framework of
learning by erasing, discussed in Chapter 2, but it gives an account of the progress
of mind-change that differs from both. It allows thinking of incoming information
in a more local way—as the removal of possible mind-changes, rather than the
hypotheses themselves. This is a step towards modeling a learner to have limited
access to the whole range of possibilities.

In Chapter 7 we explicitly enriched learning situations with a second agent,
the teacher. In Chapter 8 we considered a multi-agent scenario of the Muddy
Children puzzle. Inspired by results on the learnability of generalized quantifiers,
we reinterpreted the agents of the puzzle as scientists. They are supposed to decide
a hypothesis on the basis of a background assumption (a generalized quantifier)
and inductive epistemic inference. The most immediate contribution to dynamic
epistemic logic is a concise, linear representation of the epistemic situation of
Muddy Children and a characterization of the solvability of the generalized version
of the Muddy Children puzzle (with arbitrary quantifiers). Viewing the puzzle
from the perspective of learning theory, leads one to extend the incoming factual,
propositional information by some epistemic, indirect information. It sheds light
on a different kind of learning performed by a team of learners with interconnected
observational power. Moreover, our approach gives additional insights into the
efficiency of learning.
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Overall, in this thesis we focused on building a connection between formal learn-
ing theory and dynamic epistemic logic. The semantic link provided dynamic
epistemic logic with a uniform framework for considering iterated actions. The
semantic analysis underlying this logical view on inductive inference led us to give
syntactic chracterizations of learnability in doxastic epistemic modal-temporal log-
ics. Further topics of the thesis, taken from the domains of computability, games,
and multi-agency, strengthen the connection by providing additional insights into
the process of epistemic and doxastic change.

There are many open questions and directions for further work. They are all
discussed in detail in the corresponding chapters of the thesis. Let us here un-
derline some of them that seem especially interesting from the perspective of the
interrelation between learning theory and logics of knowledge and belief.

The first open problem concerns the transfer of the computational aspects of
learning theory to the frameworks of belief revision and epistemic change. The
task of revising beliefs has a direct psychological interpretation. This cognitive link
leads us towards the computational framework. Hence, a theoretically interesting
and an empirically inspiring direction is to establish a broad learning-theory-
like computational platform for investigating the restriction to computable (and
perhaps also tractable, cf. Chapter 8) belief-revision. Chapter 4 gives a general
setting that could be adapted to such considerations.

The second direction is to incorporate non-trivial epistemic multi-agency into
the framework of learning theory. Such multi-agency is the very central concept
of game theory and epistemic logic. In learning theory, team learning has been
considered in the context of improving learnability, but these considerations have
been limited by conditions of true information and perfect observation. From our
considerations in Chapter 8 we can see that there are very simple scenarios in
which quite substantial observational limitations of the agents can still lead to
successful learning.

The third further direction concerns a generalization of learning-theoretic
approach to account for a great variety of input information. As we showed (e.g.,
in Chapter 4) the character of the incoming information can heavily influence con-
vergence. Hence, it is reasonable to account for different levels of trustworthiness
in formal learning models, by linking different kinds of incoming information with
different operations on models.

The fourth topic of further work concerns analyzing particular learning al-
gorithms, properties of learning functions, and properties of learnable classes in
epistemic and doxastic temporal logic. In particular, we would like to get the
temporal characterizations of protocols that govern certain types of learning or
lead to particular learning effects. The topic is especially interesting, because the
temporal treatment of hypotheses gives a framework for analyzing different types
of structures on a common ground, as we argued in Chapter 5.
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Abstract

The thesis links learning theory with logics of knowledge and belief.

Following the introduction and mathematical preliminaries, Chapter 3 contains
a methodological analysis of both frameworks, in particular it analyzes the basic
learning-theoretic setting in terms of dynamic epistemic logic.

In Chapter 4 we use learning theory to evaluate dynamic epistemic logic-
based belief-revision policies. We investigate them with respect to their ability
to converge to the true belief for sound and complete streams of positive data,
streams of positive and negative data, and erroneous fair information. We show
that some belief-revision methods are universal on certain types of data, i.e., they
have full learning power.

Chapter 5 is concerned with expressing identification in the limit and finite
identifiability in the languages of modal and temporal logics of epistemic and
doxastic change. We characterize learnability by formulas of various logics of
knowledge and belief.

In Chapter 6 we investigate the notion of definite finite tell-tale set in finite
identifiability of languages, in particular the computational complexity of finding
various kinds of minimal DFTTs. Assuming the computability of learning functions
we show that there are classes of languages that are finitely identifiable, but no
computable agent can always conclude it as soon as it is objectively possible.

In Chapter 7 we analyze different levels of cooperativeness between the learner
and the teacher in a game of perfect information based on sabotage games. We
give formulas of sabotage modal logic that characterize the existence of winning
strategies in such games. We show that non-cooperative case is PSPACE-complete,
and that relaxing the strict alternation of the moves of the two players does not
influence the winning conditions.

In Chapter 8 we generalize the Muddy Children puzzle, to account for arbitrary
quantifier announcements. We characterize the solvability of the generalized
version of the Muddy Children puzzle and we propose a new representation of
the epistemic situation of Muddy Children scenarios. Our modeling is linear with
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respect to the number of agents, and is more concise than the one used in the
classical dynamic epistemic approach.

Overall, we focus on building a connection between formal learning theory
and dynamic epistemic logic. We provide dynamic epistemic logic with a uniform
framework for considering iterated actions. On the other hand, this leads to a
logical view on inductive inference and to syntactic characterizations of learnability
in modal and temporal logics. Further topics of the thesis, taken from the domains
of computability, games, and multi-agency, strengthen the connection by providing
additional computational, logical and philosophical insights into the process of
epistemic and doxastic change.



Samenvatting

Deze dissertatie verbindt leertheorie met logica’s van kennis en geloof.

Na de inleiding en het wiskundige voorwerk volgt Hoofdstuk 3 met een method-
ologische analyse van beide gebieden. Daarbij analyseert dit hoofdstuk de leerthe-
oretische werkwijze in termen van de dynamisch-epistemische logica.

In Hoofdstuk 4 gebruiken we leertheorie om strategieën voor geloofsrevisie te
evalueren die gebaseerd zijn op dynamisch-episteische logica. We beoordelen deze
strategien op hun mogelijkheden om naar waar geloof te convergeren op correcte
en volledige stromen van positieve gegevens, op stromen van positieve en negatieve
gegevens, en op beperkt foutenbevattende informatie. We laten zien dat geschikte
geloofsrevisiemethoden universeel zijn op bepaalde soorten gegevens, d.w.z. dat ze
dan volledige leerkracht hebben.

Hoofdstuk 5 houdt zich bezig met het uitdrukken van identificatie in de limiet
en eindige identificeerbaarheid in modaal-logische en tijdslogische talen voor
epistemische en doxastische verandering. We karakteriseren leerbaarheid daarbij
door middel van formules van verschillende logica’s van kennis en geloof.

In Hoofdstuk 6 onderzoeken we het begrip (eindige telltale-verzameling) uit de
theorie van eindige identificeerbaarheid van talen. In het bijzonder onderzoeken we
de computationele complexiteit van het vinden van diverse soorten van minimale
DFTTs. Onder de aanname van de berekenbaarheid van de leerfuncties laten
we zien dat er klassen van talen zijn die eindig identificeerbaar zijn, terwijl toch
geen berekenbare agent altijd de juiste identificatie kan maken zodra dat objectief
mogelijk is.

In Hoofdstuk 7 onderzoeken we verschillende niveaus van samenwerkingsberei-
dheid tussen leerling en leraar in een spel van perfecte informatie gebaseerd op
sabotage-spelen. We geven formules van de sabotage-modale logica aan die het
bestaan van winnende strategien in dergelijke spelen karakteriseren. We laten
zien dat het niet-samenwerkingsgeval PSPACE-volledig is, en dat verzwakking
van de eis dat de zetten van de twee spelers strikt alternerend zijn de condities
voor winnen niet benvloeden.
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In Hoofdstuk 8 generaliseren we de informatie-puzzel van de modderige kinderen
door aankondigingen met willekeurige kwantoren toe te laten. We karakteriseren
de gevallen waarin de gegeneraliseerde puzzel oplosbaar is en we stellen een nieuwe
representatie voor van scenario’s met modderige kinderen. Onze modelleermethode
is lineair met betrekking tot het aantal agenten en is compacter dan die van de
klassieke dynamisch-epistemische benadering.

Door het proefschrift heen zijn we er steeds op gericht een verbinding aan
te brengen tussen formele leertheorie en dynamisch-epistemische logica. We
geven aldus aan de dynamisch-epistemische logica een uniform kader voor het
beschouwen van herhaalde handelingen. Aan de andere zijde leidt dit verband tot
een logische visie op inductieve inferentie en tot syntactische karakteriseringen van
leerbaarheid in modale en temporele logica’s. De verdere thema’s uit de dissertatie,
afkomstig uit de gebieden van berekenbaarheid, speltheorie, en de theorie van meer-
agentsystemen, versterken de verbinding door additionele computationele, logische
en filosofische inzichten te geven in processen van epistemische en doxastische
verandering.
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